
H2020-JTI-EuroHPC-2019-1

REGALE: An open architecture to equip next generation HPC

applications with exascale capabilities

Grant Agreement Number: 956560

D3.2

REGALE prototype v2.0

Version: 2.0

Author(s): Federico Tesser, Daniele Cesarini (CINECA)

Contributor(s): Julita Corbalan, Shleer Qamar, Lluís Alonso Jané (BSC), Eishi Arima (TUM),

Mathieu Stoffel (ATOS), Andrea Bartolini, Mohsen Seyedkazemi Ardebili,

Francesco Beneventi, (UNIBO), Michael Ott (LRZ)

Date: 29.06.2023

1



D3.2 REGALE Prototype

Project and Deliverable Information Sheet

REGALE
Project

Project Ref. №: 956560

Project Title: REGALE

Project Web Site: https://regale-project.eu

Deliverable ID: D3.2

Deliverable Nature: Other

Dissemination Level: PU

Contractual Date of Delivery:
30 / 06 / 2023

Actual Date of Delivery:
30 / 06 / 2023

EC Project Officer: Evangelos Floros

* - The dissemination levels are indicated as follows: PU = Public, fully open, e.g. web; CO =

Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified,

information as referred to in Commission Decision 2001/844/EC.

Document Control Sheet

Document

Title: REGALE prototype v2.0

ID: D3.2

Version: 2.0 Status: Final version

Available at: https://regale-project.eu

Software Tool: Google Docs

File(s): REGALE_D3.2_ver2.0.docx

Authorship

Written by: Federico Tesser, Daniele Cesarini
(CINECA)

Contributors: Julita Corbalan, Shleer Qamar, Lluís
Alonso Jané (BSC), Eishi Arima (TUM),

https://regale-project.eu
https://regale-project.eu


D3.2 REGALE Prototype

Mathieu Stoffel (ATOS), Andrea Bartolini,
Mohsen Seyedkazemi Ardebili, Francesco
Beneventi (UNIBO), Michael Ott (LRZ)

Reviewed by: Yiannis Georgiou, Georgios Goumas

Approved by: Yiannis Georgiou, Georgios Goumas

Document Status Sheet

Version Date Status Comments

0.1 22.05.2023 Draft Initial version

1.0 22.06.2023 For internal review

2.0 29.06.2023 Final version For submission

Document Keywords

Keywords: REGALE, HPC, Exascale, HPC PowerStack, Power
Management

Copyright notice:
© 2021 REGALE Consortium Partners. All rights reserved. This document is a
project document of the REGALE project. All contents are reserved by default and
may not be disclosed to third parties without the written consent of the REGALE
partners, except as mandated by the European Commission contract 956560 for
reviewing and dissemination purposes.
All trademarks and other rights on third party products mentioned in this document
are acknowledged as owned by the respective holders.



D3.2 REGALE Prototype

Table of Contents

1. Executive Summary 6

2. Introduction 9

3. Component-to-component Integration 11

COUNTDOWN - EXAMON 11

EAR - EXAMON 16

COUNTDOWN - EAR 19

EAR - OAR 21

BEO - OAR 23

EAR - DCDB 31

4. Extensions of Integration Scenarios 34

5. REGALE Library 36

DDS Basics 36

Structure of the REGALE middle layer based on FastDDS 38

Examples and DDS basics 42

Countdown extensions for supporting FastDDS 46

ExaMon extensions for supporting FastDDS 49

Spack Deployment 54

6. Conclusions and Future Works 56
6. GitLab Links 57

7. References 58



D3.2 REGALE Prototype

Table of Figures

Figure 1a: Dashboard of the information obtained both by COUNTDOWN and…

Figure 1b: We reported here COUNTDOWN information like “number of…

Figure 1c: COUNTDOWN-EXAMON dashboard where, at the top…

Figure 1d: Heatmap showing the count (at the top)…

Figure 2: EAR-EXAMON Integration PlantUML Diagram

Figure 3: EAR-EXAMON Dashboard

Figure 4: A scheme of the integration work done by COUNTDOWN…

Figure 5: OAR-EAR First Approach Integration

Figure 6: Overview of the architecture of the AAPC mechanism,…

Figure 7: Sequence diagram describing the interaction between RJMS, and…

Figure 8: Data Flow between EAR and DCDB Componentes

Figure 9: Elements in the DCPS model

Figure 10: Elements in the RTPS model

Figure 11: Structure of the REGALE library

Figure 12: Configuration file REGALE library

Figure 13: Configuration file REGALE memory types

Figure 14: Source code of an example of REGALE publisher

Figure 15: Source code of an example of REGALE subscriber

Figure 16: The subscriber has received some data from a publisher…

Figure 17: The subscriber has not received anything, but it…

Figure 17: The subscriber has not received anything, but it…

Figure 19: Dynamic link mechanism of COUNTDOWN library



D3.2 REGALE Prototype

1. Executive Summary
This document presents the current progress of WP3: REGALE prototyping. The primary

objective of REGALE is to integrate tools and create a European software stack for power and

workflow management in next-generation supercomputers. Within WP3, we will provide

three deliverables that contain the outcomes of specific tasks. By utilising the tools

developed by our partners (additional details in WP1-D1.1/WP1-D1.2), we have identified

three integration scenarios that address the requirements already outlined in WP1. This

deliverable builds upon the prototype implementation described in D3.1 by introducing an

additional middle layer that facilitates interoperability among the various REGALE tools.

This deliverable focuses on three main work topics: i) component-to-component integration,

ii) extensions of scenarios, and iii) the development of the REGALE library. In the

component-to-component integration we describe the progress done since the last WP3

deliverable (D3.2) and in the chapter related to the REGALE library we describe the overall

structure and organisation of this communication framework that we develop to facilitate

the tool integration.

6



D3.2 REGALE Prototype

List of Abbreviations and Acronyms

Abbreviation / Acronym Meaning

AAPC Application-Aware Power Capping

API Application programming interface

BEO Bull Energy Optimizer

BMC Baseboard Management Controller

CQL Cassandra Query Language

CQLSH Cassandra Query Language Shell

DB Database

DCPS Data-Centric Publish Subscribe

DDS Data Distribution Service

EARD EAR Daemon

EARL EAR Library

EXAMON Exascale Monitoring

FSPC Fair Sharing Power Capping

SW Software

HW Hardware

IDL Interactive Data Language

IoT Internet of Things

IPMI Intelligent Platform Management Interface

IS Integration Scenario

M2M Machine-to-Machine

7



D3.2 REGALE Prototype

MQTT Message Queuing Telemetry Transport

MPI Message Passing Interface

NM Node Manager

NoSQL No Structured Query Language

OMG Object Management Group

PR Pull Request

PPE Power and Performance Estimator

QoS Quality and Service

RAPL Running Average Power Limit

REST REpresentational State Transfer

ROS Robot Operating System

RTPS Real-Time Publish-Subscribe

RJMS Resource and Job Management System

TTS Time To Solution

XML eXtensible Markup Language

JM Job Manager

JSON JavaScript Object Notation

8



D3.2 REGALE Prototype

2. Introduction

The REGALE project follows two main paths (i) the PowerStack path that focuses more on the

power-efficient operation of modern supercomputers, and (ii) the Workflow Engine path that

focuses more on the execution of complex, workflow-based applications on modern

supercomputers. WP3 focuses on the PowerStack path which aims to prototype a software

stack to enable full-scale production-grade solutions for holistic power management of a

supercomputing system.

This deliverable extends the prototype implementation defined in D3.1 by proposing a

middle layer to support the interoperability of the different REGALE tools. Indeed, when

implementing the integration scenarios we faced the challenge of connecting the different

REGALE tools. Two approaches have been taken:

1. Component-to-component integration

2. Middle layer incorporation

In D3.1 we proposed an integration of the different tools by mean of restructuring the codes

to insert interfaces between the tools:

1. COUNTDOWN - EXAMON

2. EAR - EXAMON

3. COUNTDOWN - EAR

4. EAR - OAR

5. BEO - OAR

6. EAR - DCDB

The issue with this approach is that the number of interfaces to be supported increases

exponentially with the number of tools, with a growing need of an interoperability layer

which allows to abstract the communication from the policy integration. For these reasons in

D3.2 we also evaluated the opportunity of having a unified middle layer approach. Different

software approaches were considered such as callback [20], virtual table [21], and different

communication frameworks with robust inter-agent messaging. In this regard, a promising

communication framework is Data Distribution Service (DDS) [10], which is fully distributed,

enables low-latency messaging, and provides configurable Quality of Service (QoS) profiles

that customise messaging parameters. Moreover being brokerless, DDS, allows flexible

communication topologies between the REGALE actors (node, job, system managers, etc)

which executes in different parts of the ICT infrastructure.

In this document we introduce the REGALE library, which is a standard communication layer

that will be used by all REGALE tools to agnostic communicate among them in order to

integrate tools in a loosing couple fashion. This allows the REGALE Power Stack to be easily

extensible and not depending on a specific tool, but it would be possible to expand in future

with new tools. The REGALE library is built around the eProsima FastDDS communication

framework.

9



D3.2 REGALE Prototype

The document is structured as follows. In Chapter 3, we describe the component to

component integration. In Chapter 4 we discuss an extension of the integration scenarios

which can be covered by the component to component integration. In Chapter 5 we present

the initial version of the REGALE library and how it is implemented, furthermore, we will

provide an initial extension of the tools with the REGALE library.

10



D3.2 REGALE Prototype

3. Component-to-component Integration

In this chapter, we describe all the progress done on the integration for each tool. The

chapter is organised in sections where each section is focused on a specific

component-to-component integration. We describe the effort and the mechanisms that we

use in the integration to support a common SW stack. We also describe the extension

developed for each tool in order to be integrated in the REGALE SW stack.

COUNTDOWN - EXAMON

EXAMON (Exascale Monitoring) is a lightweight monitoring framework for supporting

accurate monitoring of power/energy/thermal and architectural parameters in distributed

and large-scale high-performance computing installations. EXAMON is composed of different

layers, each of them with multiple components. The integration of different data sources is

handled by the modular nature of the infrastructure, where new components can be added

seamlessly provided that they respect the correct data formats. The cornerstone of EXAMON

is the middleware layer provided by MQTT brokers1, which are the receivers of the data

generated by the low-level plugins. On top of the MQTT brokers lies the data storage layer,

where the data is uniformly formatted. From the storage layer the data can be fed to the

high-level applications layer, by exploiting a client that exposes the underlying data collected

and stored within EXAMON.

On the backend of EXAMON are located the sensor collectors, which are low level

components responsible for reading the data from the several sensors scattered across the

system. Once collected, the info is delivered by them, in a standardised format, to the upper

layer of the stack (the frontend component of EXAMON).

These sensor collectors are then organised in two parts: the first one is the MQTT API, while

the second one is the Sensor API object. As their names suggest, the former implements the

MQTT protocol functions, while the latter deploys the custom sensor functions related to the

data sampling; and this one, unlike the MQTT one (common to all the sensor layer), is

specific for each kind of collector. For example, we can distinguish collectors that have direct

access to hardware resources like IPMI, PMU units in a CPU, and collectors that sample data

from other applications (i.e Ganglia and Nagios) and batch schedulers (i.e. Slurm).

1 MQTT Approach: The MQTT (Message Queuing Telemetry Transport) protocol is a
lightweight messaging protocol designed for efficient communication between devices in
constrained environments. It follows a publish-subscribe model, where devices act either as
publishers or subscribers. Publishers send messages, known as "publishing," to a central
broker, while subscribers express interest in specific topics and receive relevant messages.
The broker acts as a mediator, routing messages from publishers to interested subscribers.
This decoupled approach enables scalable and efficient communication, as publishers and
subscribers are unaware of each other, reducing dependencies and allowing flexible device
connectivity [1].

11



D3.2 REGALE Prototype

COUNTDOWN is an open-source runtime library that is able to identify and automatically

reduce the power consumption of the computing elements during communication and

synchronisation of MPI-based applications. COUNTDOWN saves energy without imposing a

significant performance penalty by lowering CPU power consumption only during waiting

times for which performance state transition overheads are negligible. This is done

transparently to the user. Since COUNTDOWN targets performance-neutral energy savings,

its goal is to avoid performance penalties for a large set of MPI-based applications. Thus,

COUNTDOWN focuses on saving energy only when this has no effects on performance.

Moreover, COUNTDOWN can extract traces from the underlying running applications, always

with negligible overhead, letting also the user decide some raw events to be examined,

adding them to the default analysed one.

All the information obtained from COUNTDOWN then, related to the computational,

communication, energy and user defined aspects, can be used as a runtime instrument to

understand how well the application is doing, and can increment the database gathered by

EXAMON. But to let the users interpret all this info, a more human readable approach than

the extracted traces is needed, preferably graphic and interactive. And it is in this path that

the work explained in this subsection fits.

In order to achieve a successful component-to-component integration of the COUNTDOWN

and EXAMON tools, we took several steps to ensure that important metrics were being

accurately reported. One of the key steps we took was to update COUNTDOWN so as to send

metrics to EXAMON using the MQTT publish/subscribe approach.

These metrics included average frequency, power, and energy per package and DRAM, as

well as MPI metrics like MPI call counts for functions such as mpi_barrier, mpi_cast,

mpi_send, mpi_recv, mpi_reduce, mpi_wait, mpi_comm_size, mpi_isend and more.

We defined topics for COUNTDOWN metrics on the EXAMON side. By leveraging the

EXAMON data model, we were able to seamlessly add any new data stream to EXAMON with

a predefined topic, using the MQTT publish-subscribe method.

In EXAMON, the

collector2TimeSeriesDB(<metric>,<timestamp>,<key0>/<value0>,<key1>/<value1>,..)

interface is used for storing the telemetry data which are collected from COUNTDOWN in

NoSQL time series database. It provides a data insertion mechanism, a bridge between the

collector (MQTT protocol) and the time series NoSQL DB (KairosDB).

Following the update of COUNTDOWN and EXAMON, we now have all of the monitoring data

from COUNTDOWN in EXAMON. To access and visualise the data, EXAMON provides various

interfaces, such as Examon's SQL-like querying language, RESTFul API, and Cassandra Query

Language Shell (CQLSH). With the CQLSH, users can execute Cassandra Query Language

(CQL). In addition, Examon has two web user interfaces: Grafana and KairosDB user

interfaces.

12



D3.2 REGALE Prototype

COUNTDOWN-EXAMON Dashboard: The EXAMON Dashboard (which uses Grafana [11]) is a

powerful tool that allows EXAMON users to create personalised dashboards tailored to their

specific needs. In addition to the customizable options, we have developed a dashboard that

showcases the key features and capabilities of the COUNTDOWN.

Figure 1 provides a set of snapshots of the EXAMON dashboards, highlighting its ability to

visualise crucial metrics such as average frequency, power, and energy collected from the

COUNTDOWN. By presenting this information in an intuitive graphical format, users can

easily monitor and analyse the performance of the COUNTDOWN.

To enhance the analytical capabilities of the dashboard, we have incorporated additional

metrics collected from the IPMI plugin. This integration provides valuable insights into the

applications running on the system and enables users to assess the overall performance. By

combining these metrics, users gain a comprehensive understanding of the system's

behaviour and can make informed decisions regarding optimizations or resource allocation.

One of the standout features of the COUNTDOWN-EXAMON Dashboard is its inclusion of

various maps that facilitate correlation analysis. These maps depict the relationship between

frequency and MPI rank, as well as MPI call time and count with MPI metrics (like

mpi_barrier, mpi_cast, mpi_send, mpi_recv, mpi_reduce, mpi_wait, mpi_comm_size,

mpi_isend). By visually representing these correlations, users can identify patterns,

bottlenecks, or anomalies in the job's behaviour over time. The sampling rate is set to

one-second intervals.

Up until now, communication between the COUNTDOWN and EXAMON systems has been

primarily one-way, with data flowing from COUNTDOWN to EXAMON. However, we have

actively explored alternative approaches to enable bidirectional communication between the

systems. Our investigations have led us to consider multiple options, including Virtual Tables,

Callbacks, and the utilisation of libraries like Variorum2 [2] for Node Manager Wrapper. We

have also explored the use of ROS2, a widely adopted communication middleware primarily

used in robotics. ROS2 leverages high-reliability DDS and RTPS (Real-Time Publish-Subscribe)

protocols, both of which are field-proven and ensure robust and efficient communication [3].

In our pursuit of making the COUNTDOWN system MQTT compliant, we have explored the

feasibility of developing an EXAMON and COUNTDOWN agent. This agent would enable

seamless integration with MQTT-based communication protocols. As part of this exploration,

we have investigated FastDDS, a high-performance implementation of the DDS standard. The

adoption of FastDDS not only enables MQTT compliance for the COUNTDOWN system but

also offers significant advantages for the REGALE middleware [4].

2 Variorum is an extensible, vendor-neutral library for exposing power and performance
capabilities of low-level hardware dials across diverse architectures in a user-friendly manner.
It is part of the ECP Argo Project, and is a key component for node-level power management
in the HPC PowerStack Initiative [2].

13



D3.2 REGALE Prototype

Figure 1a: Dashboard of the information obtained both by COUNTDOWN and EXAMON integration,

containing information (composition of the MPI calls, power consumption, etc.) on the job

collected at execution time.

14



D3.2 REGALE Prototype

Figure 1b: We reported here COUNTDOWN information like “number of cores used”, “number of

nodes used”, “number of MPI ranks”, “total execution time”, “average frequency, power and energy

of the job” of the application. This information is given at execution time, so the user can see

changing plots in real time. Moreover, additional information obtained by EXAMON sensor

collectors are reported: “IPMI power”, “load”, “memory and network usage”, etc.

Figure 1c: COUNTDOWN-EXAMON dashboard where, at the top, we can see the heatmap of cores’

frequency, the information reported is real time. At the bottom of the figure there is a summary of

the MPI calls count and time of the job. Data is collected by COUNTDOWN at the execution time

and updated by Examon every 10s.

15



D3.2 REGALE Prototype

Figure 1d: Heatmap showing the count (at the top) and duration (at the bottom) of each MPI call

(y-axis) during the execution of a job (x-axis).

EAR - EXAMON

EAR is a system software for energy management, monitoring and optimization. These

services are provided by different EAR components. For example, the EAR Job manager (or

EAR library) provides application monitoring and optimization. The EAR Node Manager (or

EAR daemon) provides node monitoring, job accounting and node powercap. Given it also

provides node monitoring, it partially executes actions associated with the Monitor in

REGALE terminology. The EAR database manager complements the monitoring actions

together with the node manager. Finally, the EAR System power monitor (EAR Global

Manager) provides system monitoring and cluster powercap. During this period we have

been working in the integration of individual EAR components with other tools in REGALE. In

this section, for example, we have implemented the strategy to report the EAR node

manager and EAR library data through EXAMON. We will also present how to report EAR

data through DCDB. These integrations will allow, for example, to extend data already

collected by EXAMON (or DCDB) with EAR collected data. This data will include data from

running jobs both in average and at runtime. In the next section we will also show how

COUNTDOWN can co-exist with the EAR Node Manager, taking advantage of the node power

cap for example. Finally, we have also identified the requirements to interact with any

scheduler and we have implemented the integration with OAR.

The information we provided regarding EXAMON at the COUNTDOWN - EXAMON

component-to-component integration, such as the EXAMON MQTT approach and the

16



D3.2 REGALE Prototype

collector2TimeSeriesDB and dashboard, is also applicable here. Therefore, we will not repeat

the relevant information.

EAR provides, among other energy/power services, job accounting and power monitoring

focusing on power and application performance. EAR collects metrics in two granularities:

loop and application. Loop corresponds to a piece of code executed in a repetitive way. One

application can have one or multiple loops (iterative regions). EAR reports performance and

power metrics periodically for each loop. For each loop, EAR reports the set of “iterations”,

jobid, stepid and nodename. For each of this set of iterations EAR measures the Loops

Signature and reports its data. This is a set of metrics computed during the application

execution in short intervals (default value 10 sec.). EAR also reports the Application

Signature, the same set of metrics used at the loop level but applied to the granularity

jobid-stepid-nodeid.

EAR includes a reporting mechanism based on plugins with a simple API, one for each EAR

type. The following shows a subset of the report API.

/*Report EAR Data Types*/
state_t report_applications(report_id_t *id, application_t *apps, uint
count);
state_t report_loops(report_id_t *id, loop_t *loops, uint count);
state_t report_events(report_id_t *id, ear_event_t *eves, uint count);
state_t report_periodic_metrics(report_id_t *id, periodic_metric_t *mets,
uint count);
state_t report_misc(report_id_t *id, uint type, const char *data, uint
count);

For the integration of the EAR tool with the EXAMON framework, we developed a new EAR

report plugin, named examon. This report plugin was built in three stages. The first stage to

collect EAR data by implementing the EAR report APIs of report_loops,

report_periodic_metrics and report_events, and the second stage was to reformat the

collected data into an acceptable format by the EXAMON data model format, and then in the

final stage publish the data into the ExaMon broker.

Figure 2 shows the current reporting architecture. The EAR library (EARL) uses the EARD

report plugin to send the collected data to the EAR Daemon (EARD). Then the EARD uses the

Examon report plugin which implements the report_loops, report_periodic_metrics and

report_events APIs to publish the EAR data into the ExaMon Broker using the MQTT

messaging protocol.

17



D3.2 REGALE Prototype

Figure 2: EAR-EXAMON Integration PlantUML Diagram

Table 1 lists the metrics that were added to the EXAMON monitoring system through EAR in

the EXAMON-EAR integration.

Table 1: Examon metrics used for the integration with EAR

18



D3.2 REGALE Prototype

Figure 3 displays a screenshot of the dashboard we designed for EAR in EXAMON, which

shows the EAR-EXAMON component-to-component integration. This figure features two

metrics (Frequency and Power) of two compute nodes collected by EAR in EXAMON.

Figure 3: EAR-EXAMON Dashboard

COUNTDOWN - EAR

For the fine grained level that COUNTDOWN can reach, analysing at runtime the monitored

applications (already explained in subsection COUNTDOWN-EXAMON), another interesting

integration was of course the one with EAR. That in fact would let EAR have a more refined

control on the power and energy levels, for the communication phases of the applications

running on the systems, monitored by this NM.

One area of agreement among COUNTDOWN [5][6][[7] and EAR [8][9], was to modify the

first tool to use the Userspace governor. COUNTDOWN by default does not consider it,

working on specific CPUFreq files like scaling_max_freq and scaling_min_freq (affected by

the Performance and Powersave governors). This approach is explained by the fact that

COUNTDOWN does not need any special privileges to run, if it works in tandem with some

SPANK Slurm plugins which act in the prolog and epilogue phase of the job, respectively

modifying the content and the permissions of the necessary files, and reverting them back to

their original state.

EAR instead needs the Userspace governor, and so it necessitates to interact with the file

scaling_setspeed to do its job, so we needed to let COUNTDOWN understand, in a

configuration phase, what is the underlying current governor and to choose on this

information, on what configuration files act to apply its frequency reduction strategy.

19



D3.2 REGALE Prototype

Once done, the next step was to be able to share information among COUNTDOWN and EAR,

using the scaling_setspeed file mutually, trying to avoid all possible conflicts that arise from a

shared file with write permissions.

That is in fact the only file, using the Userspace governor, which modifies the current

frequency of the correlated CPU (scaling_setspeed file under cpufreq driver paths). This file

is used to set fixed frequency per CPU and it is used for energy optimization by scaling down

the frequency (known as DVFS) and to limit power consumption by reducing the frequency

when other hardware approaches are not available. EAR and COUNTDOWN use the

scaling_setspeed file and, even though its is expected to do it at different granularities

(COUNTDOWN in a more fine grain granularity than EAR since it acts at the mpi call level) it

is easy to see that there could be a possible write contention among the two tools.

So, we decided to apply the “flock” approach, before writing into the selected system file,

being able with this choice to both lock it in case of modification of the running frequency,

and at the same time to not be too limited, in an execution time fashion, by the overhead of

a mandatory lock. Flock in fact places advisory locks, non enforcing a full locking scheme on

the specified file (or files), which can result in a more responsive mechanism, being not

surrounded by all the constructs added to a mandatory lock.

But of course, it is needed both the tools being aware of the necessity to use flock, for the

scaling_speed file. This last consideration means that, being a process free to ignore an

advisory lock, all the participating processes must cooperate to explicitly acquire the lock,

otherwise they will fall in a race condition.

The base behaviour of COUNTDOWN and EAR working together and using the Userspace

governor, is the following: COUNTDOWN read the current value in the scaling_setspeed file,

previously set by EAR and representing the current maximum frequency, and store it in an

internal variable. Starting an MPI phase, COUNTDOWN will modify the scaling_setspeed

content, setting it equal to the minimum available frequency for the underlying system, to

reduce power consumption during communication phases, Once the MPI event finishes,

then COUNTDOWN read again the value contained in the scaling_setspeed file; if it is

different from the minimum one previously stored by itself, than it means that the NM (Node

Manager, in this case EAR) planned to modify current frequencies as a result of its power

capping logic, and then COUNTDOWN will apply silently this new value, doing nothing

(except for updating the stored value of the maximum available frequency). Otherwise, it will

modify the content of the scaling_setspeed file, reapplying the maximum value stored before

entering the MPI event, to speed up the computational parts.

Hereafter a graphical representation (see Figure 4) of what was previously described: 1)

COUNTDOWN stores the current maximum value for the frequency, imposed by EAR; 2)

entering an MPI event, COUNTDOWN writes the new content of the scaling_setspeed file,

placing it equal to the minimum operating frequency the processor can run at (information

foundable in cpuinfo_min_freq file); 3) entering an APPLICATION phase, after an MPI event,

20



D3.2 REGALE Prototype

the heuristic of running at the maximum available frequency is applied by the Job Manager

(COUNTDOWN) and the Node Manager (EAR).

Figure 4: A scheme of the integration work done by COUNTDOWN an EAR

However in the previous approach, a problem still remain unresolved: suppose that EAR

decide to set, during an MPI event managed by COUNTDOWN, the maximum current

frequency equal to the minimum one; in this case, COUNTDOWN will not be able to

understand that the value written in the scaling_setspeed file was the new one decided by

EAR, and not the one set by itself, entering the MPI event. In this case the frequency will rise

up, diverging from the power capping logic of the NM. A different approach like the one

explained in section number 4.5, could help to prevent this unmanaged situation.

EAR - OAR

EARPlug is the EAR component related to the system scheduler. The main function of this

component is to provide support to connect the scheduler with EAR, in order to get EAR

working when users launch their jobs on the system. The following will describe the main

workflow of EARPlug and the required background information to integrate EAR with a new

scheduler.

In general terms, the scheduler must connect with the EARD and send all the information it

requires to properly configure the EAR loader library. The information to send to EARD is job

related, such as the job id, the user and the group who is submitting it, the number of tasks

invoked, etc. On the other hand, the scheduler must inform the EARD when the job ends.

Therefore, the hook/plugin must act as a job prologue and epilogue to inform the start and

the end of that job, respectively. Also, the scheduler integration must properly set the

environment variables required by the EARL to work with the configuration requested by the

Administrator during the installation of EAR or by users when submitting their jobs.

21



D3.2 REGALE Prototype

Below is the list of the job’s execution cycle events between any scheduler and the EARD,

those are the general workflow to connect with EARD and send a job-related information: i)

New Job/End Job, ii) New Task/End Task, and iii) New Step/End Step.

In general, the scheduler intercepts and deploys in two different contexts, those contexts

referred to as local contexts and global contexts. For any scheduler integration we must

consider which context the scheduler uses.

The local context is used to identify events triggered when the job is still in the node where it

is submitted, e.g., job just submitted, job queued, job sent to compute nodes. The remote

context refers to events triggered at compute nodes, e.g., the compute node just received

the job, the job's top shell run just started, application tasks just invoked.

The task workflow the scheduler integration is expected to follow according to what is

explained in the section above. For each of the events the EARPlug must report to EARD

what to do at such phase, like which kind of information must be collected, at which context

the operation must be performed, etc.

● New job event: This is the first phase of the hook/plugin, where it reports a new job

starting in the compute node where EARD is running. This phase is performing the

remote context. The list of steps required at this stage:

1. Fill in the application/job information.

2. Inform EARD about the start of a new job with its information.

3. Update the configuration based on what EARD returns.

4. Set the required environment variables. These are the minimum required:

a. EAR_INSTALL_PATH

b. EAR_ETC

c. EAR_TMP

d. EAR_VERBOSE

e. LD_PRELOAD

● End job event: This last phase is called when all tasks related to a job (or last step)

end. This phase is performing the remote context.

● New step event: If your scheduler is working with steps, then at this phase it needs to

communicate with EARD the creation of a new step. The communication process is

very similar to the new job event with the step related info.

● End step event: Analogous with New step event. These two events must be

performed for each node where the step is executing (remote context).

● New task event: This event is triggered by the scheduler once per task created, on

each compute node (remote context).

For the OAR-EAR integration, the first approach that was followed and tested was manually

using the available EAR APIs for prolog/epilog messages: new job, end job APIs using ejob

22



D3.2 REGALE Prototype

tool, where the OAR tool was modified to prolog/epilog with those EAR command APIs using

the mentioned EAR tool, also the OAR tool was manually setting all the needed environment

variables for the EAR to load successfully. Figure 5 shows the integration approach that was

used using the EAR ejob tool and manually setting the EAR environment variables.

Figure 5: OAR-EAR First Approach Integration

The second approach that we followed for this integration is more dynamic and it has been

tested with the new EAR release successfully, following the same concept that was explained

in the first approach of OAR scheduler communicating with EAR the start and end of the jobs

while setting the needed environment variables, however using a single EAR tool called erun,

where it’s not needed to use the prolog/epilog messages or manually set the environment

variables anymore.

The first scheduler integration implemented in the EAR program was a SLURM spank plugin.

In order to support other schedulers or other scenarios, we created the erun command [12].

This command replicates all the SLURM and EAR SLURM Plug-in communication pipeline. It is

the official EAR tool to replace all the steps done by the SLURM pluginit does the

new_job/end_job/new_task communication and sets the environment variables. It can be

used to set up EAR at job submission.

erun will simulate on the remote node both the local and remote pipelines for all created

processes. It has an internal system to avoid repeating functions that are executed just one

time per job or node, like SLURM does with its plugins.

BEO - OAR

In the context of the first integration scenario, a new feature is to be implemented in Bull

Energy Optimizer (BEO): a mechanism to automatically adapt the power capping enforced on

23



D3.2 REGALE Prototype

jobs, depending on the characteristics of the latter. To implement this mechanism, called

Application-Aware Power Capping (AAPC), BEO needs information about the state of the

managed partition of compute nodes, notably regarding the jobs. That is why BEO is

intended to be integrated with OAR through a prologue and an epilogue, whose

implementation depends on the design of the AAPC mechanism. The architecture of this

integration is presented in the first sub-section.

However, the first experiments associated with the implementation of the AAPC mechanism

in BEO exhibited a counter-intuitive and counter-productive phenomenon: when a compute

node is under a heavy load (e.g. FireStarter [16]), a high latency tends to exist between the

moment a power cap is set, and the moment it is effectively enforced (e.g. several minutes).

If this observation is confirmed, the design of both the AAPC mechanism and the integration

between BEO and OAR should be modified. That is why the implementation of the prologue

and epilogue for the integration of BEO with OAR was put on hold. Additionally, an

experimental evaluation of the latency associated with the enforcement of a power cap on

an HPC compute node was initiated, and is presented in the second sub-section.

As a final note, we mention that an integration based on a prolog and an epilog was already

performed between Bull Dynamic Performance Optimizer (BDPO), another tool developed by

AtoS, and OAR in the context of the WP2 of the REGALE project. Thus, working skeletons for

both the prologue and the epilogue related to BEO and OAR were implemented, based on

this previous work.

Integration of BEO with OAR regarding the Application-Aware Power Capping (AAPC)
mechanism

To begin with, let us specify the use case to be addressed by the AAPC mechanism. In a few

words, it is based on the following empirical observation: HPC applications exhibit a wide

range of workloads, which all have different sensibilities to power capping regarding

performance. Indeed, on the one hand, some applications/use-case pairs, for instance NEMO

TOP/PISCES solver applied to GYRE [25], tend to be heavily memory-bound. As a

consequence, they do not constantly require the computing cores to consume their whole

nominal power budgets to execute the workload associated with the application. Thus, when

considering the average behaviour of the application, the nodes which execute it can be

constrained by a power cap with only moderate to no impact on the performance of the

application. On the other hand, the execution of applications which are much more

compute-bound, such as HPL [26], highly and almost permanently stresses the computing

cores. As a result, decreasing the raw computational power exhibited by the nodes, for

instance by enforcing a power cap on them, induces a significant performance degradation.

That is why compute-bound applications tend to be greatly sensitive to power capping.

Based on those experimental observations, the rationale associated with the AAPC

mechanism consists in leveraging knowledge about the applications executed on a partition

of compute nodes at a given time to dynamically redistribute the power budgets allocated to

24



D3.2 REGALE Prototype

the jobs. The goal is to favour compute-bound jobs so as to increase the job throughput of

the considered partition, when compared to the standard Fair Sharing Power Capping (FSPC)

strategy. Indeed, by trying not to power-constraint the nodes executing compute-bound jobs,

heavy performance degradations for the associated applications could be avoided, which

should tend to increase the job throughput for the considered partition. On the contrary, the

shift of power budget from nodes allocated to memory-bound jobs to nodes allocated to

compute-bound jobs should tend to increase the performance degradations for the

applications associated with the former jobs. This will translate to a decrease of the job

throughput for the considered partition. However, as explained beforehand, the avoided

performance degradation for compute-bound jobs should positively counterbalance the

induced performance degradation for memory-bound jobs. Hence, on average, at the scale

of a power-constrained partition of nodes, the job throughput should be increased by the

AAPC mechanism when compared to the FSPC strategy.

Overview of the architecture of the solution

An overview of the software architecture associated with the implementation of the AAPC

mechanism, and of how it integrates in the management stack of a supercomputer is

presented by Figure 6. The AAPC mechanism consists of two main components, whose

interactions are described by the sequence diagram presented by Figure 7:

● An AAPC extension plugin for the Resource and Job Management System (RJMS) - in

the context of REGALE, the RJMS is OAR;

● An AAPC module for BEO.

The role of the former is to notify the latter for two kinds of events, namely the start and the

termination of jobs. The notifications are accompanied with additional information about the

concerned job: its name and ID, the list of nodes allocated to the job, and the tag of the

application associated with the job (more details about the tags in the next subsection). The

AAPC module for BEO can thus build and maintain an internal representation of the state of

the partition of compute nodes it manages regarding power capping. Incidentally, the power

budget for the aforementioned partition is specified by the administrator of the

supercomputer and is used as input by the AAPC module for BEO. Thanks to those pieces of

information, it is possible for the AAPC module for BEO to compute a sharing of the power

budget between the nodes, and to update it at each job start or termination. Using the

features implemented by the core engine of BEO, it is then possible to dynamically create,

update and enforce power capping rules on the compute nodes. It should also be noted that

in case of deactivation of the AAPC mechanism, the site-specific default power capping rules

should be enforced again.

25



D3.2 REGALE Prototype

Figure 6: Overview of the architecture of the AAPC mechanism, and of its integration in the

management software stack of a supercomputer.

Another remarkable component presented by Figure 7 is the Power and Performance

Estimator (PPE), to which a database system storing performance models it built and

estimations it performed is joined. Its role is to estimate the power consumption and

performance of an application and to evaluate the impact of a power constraint on the latter,

based on temperature and power consumption monitoring data of previous executions

26



D3.2 REGALE Prototype

and/or of executions of similar applications. Those estimations are then sent to the AAPC

extension plugin of the RJMS so as to attribute a tag to the job.

Elements about the application tags

To start with, let us define what application tags are. In a few words, as explained

beforehand, HPC applications exhibit a wide range of workloads which can be classified

according to several different taxonomies. The one used in the context of this work about the

AAPC mechanism defines three categories of applications:

● COMPUTE tag: The application is mainly compute-bound, and hence its performance

tends to be heavily degraded under power cap;

● MEMORY tag: The application is mainly memory-bound, and hence its performance

tends to be lowly degraded under power cap;

● MIXED tag: The application exhibits several interlaced behaviours, and hence the

impact of a power cap on its performance tends to be moderate on average.

From the point of view of the AAPC mechanism, the tag associated with an HPC application

defines a soft relative lower bound on the power constraint to be applied to a node

executing the latter. Relative, since the associated power cap is defined as a percentage of

the nominal power consumption of the node. Soft, because the AAPC mechanism tries to

find a sharing of the power budget allocated to the partition which makes it possible for each

individual power cap enforced on the compute nodes to be compliant with the tags

associated with the jobs they execute, but it can set lower power constraints if such a sharing

does not exist. On top of that, the application tags are used to build a priority order

regarding nodes to be power-capped: nodes executing an application tagged as MEMORY

should be power-constrained before nodes executing an application tagged as COMPUTE.

Furthermore, application tags are related to the PPE component. Indeed, the goal of the PPE

is to estimate the power consumption and performance level of an HPC application and the

impact of a hypothetical power cap, based on previous executions of the concerned

application, and executions of similar applications. Those estimations are then to be used by

the AAPC extension plugin of the RJMS to associate a tag with the considered execution of

the application. Note that PPE will probably be implemented in a second step of

development of the AAPC mechanism. As a result, in a first step, AAPC will most probably

rely on user input regarding application tags.

27



D3.2 REGALE Prototype

Figure 7: Sequence diagram describing the interaction between RJMS, and the AAPC module of

BEO.

28



D3.2 REGALE Prototype

Experimental evaluation of the latency associated with the enforcement of a power cap

Anecdotal evidence has shown that in some circumstances administration commands to

adjust processor power consumption are not always taken into account, i.e. there is no

change in frequency even after a delay of several minutes. This behaviour has been observed

on systems with x86-64 processors from both AMD and Intel. The purpose of this study is to

better understand the operation of processor power management commands across a range

of HPC compute nodes.

Experimental protocol

The following factors, and when applicable the associated ways of varying them, were

identified as having the potential to influence the success or failure of a capping operation:

● Management interface: In-band (RAPL) or out-of-band (IPMI or Redfish);

● Capping direction: From high-power cap to lower power cap and vice versa;

● Size of the capping step in Watts: cap from 600W to 300W in a single step or through

10W decrements;

● The order of capping operations: (1) setting a cap threshold and then activating the

capping system, or (2) activating the capping system and then changing the cap

power level, or (3) activating the capping system, setting a new power level and

sending a second, nominally redundant, activation command;

● The level of CPU load: starting from 100% and progressively reducing the load. This is

done through two distinct mechanisms. First by progressively reducing the workload

across all online processors equally, and then by running all processors at 100% and

decreasing the number of running threads. Additionally, for the case with decreasing

load on all cores, the period over which the average is calculated is increased. For

example, with a load of 99%, calculated over a period of 10 ms, there will be an idle

period of 100 µs, whereas the same load calculated over 1s will have an idle period of

10ms;

● The processor characteristics (e.g. model, family, step, ...);

● The environment (e.g. version of the Linux kernel, firmware versions, ...).

On a single system, where processor type, firmware and possibly management interface are

fixed, the other factors are permuted resulting in a lower threshold approaching 1,000 tests

to execute per system (i.e. (1) cap from high to low, with capping active at 100% load in a

single step, and (2) cap low to high with other factors remaining constant). A single test

typically runs for between thirty seconds and two minutes.

Architecture of the experimental framework

The system uses a client-server model, with the server being an agent running on the system

under test. The agent performs two distinct roles:

1. Launches the workload with the requisite configuration;

29



D3.2 REGALE Prototype

2. Monitors the per-socket power consumption through the Running Average Power

Limit (RAPL) interface and sends this to the client at the end of each run.

The client iterates over the different permutations of test configurations requesting the

agent to launch the workload. Then, after a warm-up period, it will apply the capping

operation via the management interface. During the run, the client polls the Baseboard

Management Controller (BMC) for system-level power consumption. At the end of each test

run, the client loads the test configuration along with the timestamped RAPL and BMC power

data and stores these in a relational database.

To assist with the analysis, a web-based, data-driven, graphical interface, which plots the

data for each test held in the database, was developed. This too uses a client-server model

with a web server offering a custom REST API to the database which is consumed by the web

interface.

The choice of the client-server model was imposed by the typical HPC system configuration,

whereby there is a single network interface used by both the BMC and the host server. This

usually disallows communication between the host and its own BMC.

Preliminary experimental observations

The experimental framework is still under active development, but, as part of this process, it

has been run against a (single) x86-64 test system. Whilst this has not been a formal

campaign and as such no hard conclusions can be drawn, it is possible to make the following

observations:

● The evaluated compute node ignored capping requests, when either capping from

high power to low power, or from low to high;

● One possible sequence of capping commands that appears to reliably have successful

and rapid capping effects was identified. This has to be confirmed once the

experimental framework is complete and additional blade-types are tested;

● For the system used for the development a capping operation appears to reduce the

frequency on just one of the two sockets, the other continuing at full power. It is still

to be determined if it is always the same socket.

Next steps

To conclude this section, we describe the next envisioned steps regarding the integration of

BEO and OAR:

● Launch a formal test campaign across a variety of HPC compute nodes with different

CPU models. Full analysis of the results. If possible identify the conditions for

systematic, guaranteed successful capping operations;

● If required, adapt, accordingly to the result of the aforementioned test campaign, the

design of the prologue and epilogue underlying the integration of BEO with OAR;

30



D3.2 REGALE Prototype

● Implement the AAPC mechanism in BEO, together with the aforementioned prologue

and epilogue;

● Experimentally evaluate the AAPC mechanism, and compare it to a FSPC mechanism

regarding job throughput.

EAR - DCDB

As outlined in the previous section on the EAR/EXAMON integration, EAR focuses on energy

management, monitoring and optimization of HPC systems. DCDB on the other hand focuses

on holistic monitoring of entire data centres, spanning from system hardware over system

software and applications to supporting infrastructures like cooling or power distribution. For

its energy management and optimization functionality, EAR collects metrics on application

performance and power consumption that would typically also be collected by DCDB. Since

EAR has certain requirements towards readout frequency and latency that are higher than

those of general monitoring, it seemed reasonable for EAR to collect the metrics it relies on

itself. However, in order to reduce monitoring overhead on the compute nodes and avoid

potential conflicts accessing the same sensor data, we decided to integrate both tools and

have EAR send the metrics it collects to DCDB such that DCDB still has a global view on all

metrics without having to read the same data twice..

EAR collects metrics in two granularities: loop and application. Loop corresponds to a piece

of code executed in a repetitive way. One application can have one or multiple loops

(iterative regions). EAR reports performance and power metrics periodically for each loop.

For each loop, EAR reports the set of “iterations”, jobid, stepid and nodename. For each of

this set of iterations EAR measures the Loops Signature and reports its data. This is a set of

metrics computed during the application execution in short intervals (default value 10 sec.).

EAR also reports the Application Signature, the same set of metrics used at the loop level but

applied to the granularity jobid-stepid-nodeid.

EAR includes a reporting mechanism based on plugins with a simple API, one for each EAR

type. The following shows a subset of the report API.

/*Report EAR Data Types*/
state_t report_applications(report_id_t *id, application_t *apps, uint
count);
state_t report_loops(report_id_t *id, loop_t *loops, uint count);
state_t report_events(report_id_t *id, ear_event_t *eves, uint count);
state_t report_periodic_metrics(report_id_t *id, periodic_metric_t *mets,
uint count);
state_t report_misc(report_id_t *id, uint type, const char *data, uint
count);

On the other hand, the sensor plugin framework is available within dcdbpusher, DCDB’s data

acquisition daemon that is responsible for gathering telemetry data. It is designed to acquire

31



D3.2 REGALE Prototype

telemetry data from arbitrary APIs, interfaces or protocols. Once acquired, the data is

transferred to the internal sensor cache from where it is available for further downstream

processing by so-called operator plugins (e.g. for aggregation, statistics, analysis). Optionally,

it can be pushed towards the CollectAgent daemon via the MQTT protocol and then onwards

to the persistent storage layer. By default, sensor plugins are loaded at the startup of

dcdbpusher, but can also be loaded or unloaded during the lifetime of the daemon via its

RESTful API.

The EAR report plugin, which we call dcdb-report-plugin [13], is used to send the EAR

collected data to DCDB. It implements the report periodic metrics, report loops, and report

events APIs of the EAR reporting APIs described above. The integration is using a shared

memory region to exchange data between EAR and DCDB. When the dcdb-report-plugin is

loaded, the collected EAR data per report type is written to the shared memory region

which is accessed by DCDB to collect the data.

A new sensor plugin, called ear-sensor[14], was developed on the DCDB side. This ear-sensor

collects the EAR metrics from the shared memory region and maps their names from the EAR

namespace to a DCDB-compatible sensor naming scheme. The collected EAR metrics data is

pushed into the storage layer using MQTT messages.

The Figure 8 below shows the flow of the data from the EAR components that generates

Figure 8: Data Flow between EAR and DCDB Componentes

them to the DCDB storage layer. The EAR library (EARL) and EAR Daemon (EARD) are the

responsible components to generate the EAR data metrics, the dcdb-report-plugin on the

EAR tool side is responsible to create/setup the shared memory segment that is being used

for data transfers between EAR and DCDB. It is the only producer that writes data to this

shared memory segment, and the DCDB plugin the only consumer that reads from it. It is

organised as a ring buffer and data is written as a well-defined C-struct which allows for

efficient data transfer between the two plugins. The EAR dcdb-report-plugin writes the

collected data per report type API into the shared memory, then the ear-sensor on the DCDB

32



D3.2 REGALE Prototype

tool periodically checks whether new data is available in the shared memory, reads it, stores

it in its sensor cache, from where it enters DCDB’s standard telemetry processing pipeline.

The collected metric’s names and the frequency of collecting the data between both EAR and

DCDB tools are configurable from both tool´s sides and it must be synced on both report

plugins sides to work properly. The currently developed version of EAR dcdb-report-plugin

keeps records of the last five collected values per metric type into the shared memory.

The collected metrics include but are not limited to frequency, power consumption (CPU,

DRAM, GPU), energy, memory bandwidth, and temperature.

This integration between EAR and DCDB is necessary since performance counter data can

only be collected by a single entity on each compute node. Although the Linux perf interface

DCDB and EAR use to read performance counters in theory allows for shared access, this

would result in lower temporal resolution at best. More often, it causes conflicts between

multiple consumers that lead to starvation of one of them. With this integration, EAR can

collect the performance counter data it needs for its runtime optimizations and only

forwards it to DCDB that can seamlessly insert it into its data processing pipeline. When EAR

is not running, e.g. because a particular job requested to not run under EAR control, the

corresponding perf plugin in DCDB can be switched on via its REST API and DCDB will collect

the performance counter data on its own. At job termination, the plugin can be switched off

again.

33



D3.2 REGALE Prototype

4. Extensions of Integration Scenarios

The above component-to-component integrations play a vital role to realise the integration

scenarios we presented in D3.1. As presented in D1.2/D3.1, the integration scenarios cover

most of the use cases defined in WP1, and we are extending these scenarios to enhance the

coverage and functionalities. Table 2 lists the properties of use cases with different

sophistication levels and demonstrates how these integration scenarios are mapped on it. As

shown in the table, these scenarios cover most of the planned areas, and the extensions will

be enhancing the quality within the currently covered area or extending the coverage by

combining with other work packages/tasks.

Table 2: Sophistication levels and mapping of integration scenarios

As mentioned above, this deliverable focuses on the PowerStack path, however we also

consider the workflow engine path, which is currently dealing with the integrations with our

5 pilot applications in WP4. Converging those two different paths and evaluating the

effectiveness of our power management schemes for real applications powered by the

workflow engines, and exploring the synergies as well as the corporations between those

two different paths (power budgeting per a set of ensemble runs) will be a significant

extension of our approach and will be covered in D3.3.

Furthermore, as we also have the sophistication effort in WP2, all the tasks in WP2 can also

be potential extensions for the three integration scenarios. For instance, T2.1 in WP2 is about

profile-driven job characterization and energy estimation, which will help the core estimation

part of the integration scenarios. T2.2 attempts to optimise application performance/power

34



D3.2 REGALE Prototype

in a phase-aware manner by a job manager, which is also promising to extend the integration

scenarios. T2.3 handles temperature-aware power-performance optimization and anomaly

detections, which complements the missing pieces in the integrations, i.e., two or more

constraints. The other tasks (I/O-aware resource allocation, elastic resource management,

co-scheduling) are also effective to enhance the use cases/scenarios, and we will carefully

pick the sophistications and map them to the integration scenarios as extensions, and also

consider multi-objective optimization.

35



D3.2 REGALE Prototype

5. REGALE Library

The ambition of REGALE is to materialise the PowerStack initiative fulfilling the integration

scenarios with an action which overpasses the single power management tool integration

providing a unifying layer for the interoperability of the power management tools in the

context of the HPC. In its essence this means to expose all the properties related to power

management knobs and sensors of compute nodes and running jobs phases, to power

management policies running at different abstractions in a coordinated manner. This is not

very different from a fleet/swarm of drones solving complex tasks. However, a swarm of

drones can be programmed by a control engineer with a limited computer science

background, while implementing a component in the HPC PowerStack requires a PhD in

computer science. In the robotic community this is achieved thanks to a unifying

middleware - namely ROS2 [23] - which abstracts the low-level platform-dependent

interfaces with robust inter-agent messaging based on publish/subscribe mechanism [24]. To

accomplish this the ROS2 library leverages the DDS [10], which is suitable for real-time

distributed systems due to its various transport configurations (e.g., deadline and

fault-tolerance) and scalability. ROS2 converts data for DDS and abstract DDS from its users.

We believe that this approach can match the requirements of the HPC PowerStack and we

embraced it for creating the unifying middle layer for the power management in HPC -

namely the REGALE library. With a similar spirit we selected DDS as a communication layer

and hid its complexity within the REGALE library.

DDS Basics

DDS [10] is a protocol used to make distributed softwares able to communicate among each

other. To achieve this, DDS implements a publish/subscribe protocol, which is a

communication protocol that facilitates the exchange of messages or events between

publishers and subscribers in a decoupled manner. It provides a flexible and scalable

mechanism for information dissemination, where publishers do not need to have direct

knowledge of the subscribers. Instead, publishers publish messages or events to specific

topics or channels, and subscribers express their interest in receiving messages from certain

topics or channels. The protocol ensures that published messages are delivered to interested

subscribers in a timely and efficient manner.

DDS implements its Data-Centric Publish Subscribe (DCPS) model defining three key entities

in its implementation.

● Publication entities: they are responsible to define the information-generating

objects and their properties.

● Subscription entities: they define the information-consuming objects and their

properties;

36



D3.2 REGALE Prototype

● Configuration entities: they define both the types and the QoS (Quality and Service)

properties of the information transmitted as topics between publication and

subscription entities.

In the DCPS model (see Figure 9), four basic elements are needed in the system of

communicating applications.

● Publisher. It is in charge of the creation and configuration of the DataWriter it

implements, which in turn is the one which deals with the actual publication of the

messages. Of course a topic will be needed, under which the messages are published.

● Subscriber. It is in charge of receiving the data published under the topics to which it

subscribes. The DataReader object which it serves, is instead responsible for

communicating the availability of new data to the application.

● Topic. It binds publications and subscriptions. It is unique within a DDS domain (see

the following picture).

● Domain. This concept is needed to link all publishers and subscribers belonging to

one or more applications, which exchange data under different topics.

The individual applications that participate in a domain are called DomainParticipant,

and they define the DDS domain to which they belong to, specifying a domain ID,

which is a unique trait of each DDS domain. Two DomainParticipants with different

IDs are not aware of each other in a network, then different communication channels

can be created.

Imagine for example a scenario where different applications are involved, but some

of them must not interfere with each other. In this case then, their respective

DomainParticipants act as containers for publishing, subscribing, and topic entities,

but the domain IDs behave as a logical barrier able to isolate some applications from

others.

Figure 9: Elements in the DCPS model

Under DDS applications we can find the RTPS (Real-Time Publish Subscribe) protocol, actually

designed to support that specific data distribution system.

The RTPS protocol (see Figure 10) is designed to support both unicast and multicast

communications, and at its top the Domain can be found (inherited from DDS), which as

37



D3.2 REGALE Prototype

already said defines separate planes of communication. And inside a Domain there are the

RTPSParticipants, which are elements capable of sending and receiving data using as their

Endpoints:

● RTPSWriter: able to send data.

● RTPSReader: able to receive data.

And as for DDS, communication among participants is resolved around Topics, which define

and label the data being exchanged and do not belong to a specific participant. The

participant, through the RTPSWriters, makes changes in the data published under a topic,

and through the RTPSReaders receives the data associated with the topics to which it

subscribes. The communication unit is called Change, which represents an update in the data

that is written under a Topic. RTPSReaders/RTPSWriters register these changes on their

History, a data structure that serves as a cache for recent changes.

Figure 10: Elements in the RTPS model

To sum up, when you publish a change through a RTPSWriter endpoint, the following steps

happen behind the scenes of a default configuration:

● The change is added to the RTPSWriter’s history cache.

● The RTPSWriter sends the change to any RTPSReaders it knows about.

● The RTPSReaders receive the data, and update their history cache with the new

change.

Structure of the REGALE middle layer based on FastDDS

Our goal is to implement a library in a complete form in the first stage, acting as a

communication middle layer for all the software modules composing this ecosystem. And

under the hood of this library, one can find the eProsima FastDDS [1] middleware, which is a

C++ implementation providing both the OMG DDS and RTPS wire-protocol standards, and

which ensures the necessary transmission speed in the order of microseconds, required to

tweak the knobs of the power and energy efficiency field. What is presented in this

deliverable intends to act as a starting point for a future software stack, in which all the

components that will be part of it might be easily interchanged, still communicating and

exchanging data among one common middle layer software: the REGALE library.

38



D3.2 REGALE Prototype

The basic idea behind this library is, following also the mechanics behind FastDDS, to provide

the users with some simple methods useful to create publishers, subscribers, and after

having picked some topics, being able to both publish and subscribe to those, exchanging

specific information in a less invasive way than what was presented in the previous chapters

of this document. With that in mind, the picture starts to become clear: substitute all the

hacks and modifications done (or to be done), created to allow two software modules to

communicate, with one communication layer easy to link with, and that exposes clear and

easy-to-use methods. In this way, the code of all software modules and libraries currently in

play, will demand very few changes to be able to communicate with all the other

participants, and not just with one specific.

At the time this text is written, the REGALE library has a main core file, the “regale.cpp” one,

which contains the definitions of the methods that can be called by the software which will

link the correlated library (“libregale.so”), and include the concerning header file

(“regale.h”). The methods contained in these files, are just C wrappers for the members

defined (and declared) in all the other .cpp files which are composing the project, and that

are classes’ methods. We decided to go with straight C, because it is more clear for setting

the standard for the methods and the APIs, and it is usable both in C and C++ projects.

As can be seen in Figure 11, the actual structure of the REGALE library contains additional

files briefly described next.

Figure 11: Structure of the REGALE library

39



D3.2 REGALE Prototype

Directory: src

● RegaleObject: this file contains the parent object of the RegalePublisher and the

RegaleSubscriber, containing all the members and code common to the two

specialisations, like the loading of the two .xml configuration files within the folders

share an etc (we will cover them later), the creation of the topics (in FastDDS, they

are objects), and the dynamic creation of the data type, chosen by the user, at

runtime.

● RegalePublisher: this file contains, in addition to what is derived from the parent

RegalObject, the creation of the DataWriter object which is, as the previous

paragraph reports, the dedicated object dealing with the actual publication of the

messages. Moreover, here are specified the Quality of Service (QoS) for the

publishing object, like the kind (which defines the reliability kind of the endpoint) and

the max_blocking_time (which defines the maximum period of time certain methods

will be blocked), and it is specified also the “publish” method, which is the actual

method to publish something. Lastly, quite important is to cite here the subclass

PubListener, contained in the RegalePublisher object and derived from FastDDS

DataWriterListener. This member is important because its method

on_publication_matched, overridden, is the one which takes charge of checking if

there are some matches for the parent publisher and, in the positive case, triggers

the specified action.

● RegaleSubscriber: as for the previous one, here we are specialising the REGALE

objects, so worth of notes can be the specification of the QoS (as for the

RegalePublisher) and the methods “on_subscription_matched” and

“on_data_available”of the subclass SubListener, derived from the FastDDS class

DataReaderListener. If the first one is the counterpart of the publisher

“on_publication_matched”, the last one is a non blocking method which checks if

new data has arrived, and if yes stores it. The interesting thing about this subscriber

approach is that with this last method, once a subscriber is created and a specific

topic is passed to it, then the discovery of new data will happen automatically,

without any call of some sort of “subscribe” method, and will continue until the

parent program which has instantiated the Subscriber object will terminate its

operations.

● regale: this file contains the following wrappers:

➔ “Regale_create_publisher”: which is a method returning a pointer to a

RegalePublisher struct, and that calls the constructor of the RegalePublisher

object. This method must be used in the software which is linking the REGALE

library, where it is needed to create and initialise a publisher (examples follow

in the next section).

➔ “Regale_create_subscriber”: which is a method returning a pointer to a

RegaleSubscriber struct, and that calls the constructor of the RegaleSubscriber

40



D3.2 REGALE Prototype

object. This method must be used in the software where an initialised Regale

subscriber is needed (for some hints on how to use it, see the next section).

➔ “Regale_publish”: which is the method wrapping up the publish member of

the class RegalePublisher, and is the method which should be called to publish

something to the subscribers waiting on the related topic (for related

examples, see the next section).

➔ “Regale_delete”: which is the method responsible to call the virtualized

destructor of the specialised RegaleObject.

Directory: etc

● regale_profiles: this .xml configuration file (see Figure 12) contains (see picture

below) information related to the transport types available for the user, which can be

chosen at run time. Once a RegaleObject is being created, during its initialization it

loads this XML file, and it gets the transport type using the FastRTPS function

getTransportById, which retrieves a transport instance by its id (e.g., in this case:

“udpv4_transport”, “tcpv4_transport”, “shm_transport”).

Figure 12: Configuration file REGALE library

Directory: share

● regale_types: this .xml configuration file (see Figure 13) contains, instead,

information related to the data types that the user wants to use (see picture below)

in a specific run. Using the FastRTPS function getDynamicTypeByName, once the

configuration file has been loaded during the initialization of the desired

RegaleObject, the requested data type is dynamically built and created, and ready to

be used to store values, or to be sent.

41



D3.2 REGALE Prototype

In this specific case, two structs have been added to this configuration file: the first

one is “struct_freq”, which contains two uint32 members: “max_freq” and

“min_freq”. The second structure to be in play, is the “struct_power” one. This one

instead contains three unsigned integer members, of 32 bits each: “max_power”,

“min_power”, “avg_power”.

Figure 13: Configuration file REGALE memory types

Examples and DDS basics

In the following, we present some examples to provide a better understanding of the overall

picture of the REGALE library, of its implementations and of its usage.

The library itself is equipped with some examples, present in the directory examples. We will

see a couple of them, to show its ease-of-use. The selected files will be “main_publisher.c”

and “main_subscriber.c”. First of all, a couple of hints about their code (see following

figures):

● main_publisher: This file (see Figure 14) calls the “Regale_create_publisher”

function, which demands as input four values: the first two are the absolute paths to

the configuration files (regale_types.xml and regale_profiles.xml we presented

previously), while the last two are strings, representing the transport id chosen and

the topic to which publish (all the 4 input parameters are passed by the user at

runtime). This method returns a pointer to the RegalePublisher struct, which will be

used by the wrapper of the publishing method (Regale_publish) to route the

corresponding member of the relative C++ class. Depending by the topic chosen (in

this case, it can be equal to “struct_power” or “struct_freq”, which are actually the

two options at this moment we have for the data type choice, for a sake of simplicity),

the values to be published will be different: a vector of three or two uint32_t values.

42



D3.2 REGALE Prototype

Regale_publish is called three times, sending different arrays of data with one second

breaks. At last, ”Regale_delete” is called, to invoke the specific wrapped destructor.

● main_subscriber: This file calls (see Figure 15) the method

“Regale_create_subscriber”, which acts as a counter part of the

Regale_create_publisher, asking however five input parameters. The first four are the

same as the publisher; the last one instead, is a pointer to a function which we would

like to trigger, once received some data. As soon as the RegaleSubscriber pointer has

been created (ptr_func will vary depending of the content of the topic), the

main_subscriber.c starts to execute a little loop kernel, just to show what we said

previously about the non blocking approach of the subscriber: if someone is

publishing, than the message will be subscribed, and it will applied to it the function

passed as input parameter. Otherwise, nothing happens, and the “computational”

part, independent of the messages exchange, is completed.

As the last method call, the “Regale_delete” is present, to delete the subscriber.

43



D3.2 REGALE Prototype

Figure 14: Source code of an example of REGALE publisher

44



D3.2 REGALE Prototype

Figure 15: Source code of an example of REGALE subscriber

45



D3.2 REGALE Prototype

We show how to execute the two programs, and the results obtained.

Once compiled the codes in a classical way (remember to include the header of REGALE,

“regale.h”, and to link its library), the two executables generated can be launched on

different nodes (as it is in this case) or on the same node, as follows:

● ./main_publisher ~/test_regale_installation/install/share/regale_types.xml

~/test_regale_installation/install/etc/regale_profiles.xml struct_power

udpv4_transport

● ./main_subscriber ~/test_regale_installation/install/share/regale_types.xml

~/test_regale_installation/install/etc/regale_profiles.xml struct_power

udpv4_transport

to obtain the following output from the subscriber (the publisher does not execute anything

than sending data), where the printed values are the ones stored into the arrays pows,

pows2, pows3, in main_publisher.c:

Figure 16: The subscriber has received some data from a publisher registered on the same

topic, and using the same transport layer

or the following one, if the publisher has not been activated.

Figure 17: The subscriber has not received anything, but it has continued and finished its

computational part, without any blocking interference

Countdown extensions for supporting FastDDS

COUNTDOWN is a tool to identify and automatically reduce the power consumption of the

CPU cores, during communication phases of an MPI-based application.​It is a pure reactive

mechanism (based on a timer), and not based on a learning mechanism. By default, the

timer is set to 500 microseconds, because that has been evaluated as the time needed by the

hardware logic to effectively take into consideration, and apply, the change of frequencies.

You can see in Figure 18 an example: the first MPI call lasts less than the default timer, and so

the callback to lower down is not triggered. Viceversa, the second MPI event is very long, and

so COUNTDOWN can reduce the frequency, and save power during communication.

46



D3.2 REGALE Prototype

Figure 18: COUNTDOWN reactive mechanism

This saving of energy takes place without imposing significant time-to-completion increase,

by lowering CPUs power consumption only during idle times for which power state transition

overheads are negligible. This is done transparently to the user, without requiring

labour-intensive and error-prone application code modifications, nor requiring recompilation

of the application.

Hereafter a schematic approach (Figure 19) of how COUNTDOWN works transparently to the

user, standing among the application and the MPI library, intercepting the latter’s calls. The

only thing asked to the user, is to set the LD_PRELOAD variable, with the path of the

COUNTDOWN library.

Figure 19: Dynamic link mechanism of COUNTDOWN library

As it can be seen, the COUNTDOWN library is able to automatically track at fine granularity

MPI and application phases, injecting power management calls whenever it is convenient to

do so.

In the vision of the REGALE project, COUNTDOWN can change its normal behaviour for single

applications, finding its place in the project specific software stack as a Job Manager (JM).

47



D3.2 REGALE Prototype

This entity, in the REGALE ecosystem, directly interacts with the Node Manager (NM), to let it

have a more refined vision of the underlying monitored system.

Under this assumption, the REGALE library will be used by COUNTDOWN (see Figure 20) in a

straightforward manner, to publish its frequency hints to the NM, which will be subscribed to

the corresponding topic. Let’s have an example, to better explain the idea behind this

sentence.

Entering MPI phase for which COUNTDOWN believes that frequency can be lowered, a DDS

message is sent to the NM with a specific data types containing the minimum frequency at

which COUNTDOWN thinks that the application could run, without getting any performances

and Time To Solution (TTS) losses, correlated to a preselected topic. Once the NM receives

the message, it is free to apply or not the hint sent by COUNTDOWN, following its more

wider logic for the power capping of the entire monitored system. If it judges that the

frequency proposed by COUNTDOWN is compatible with its choices, then it will apply that

frequency, modifying those system files (like scaling_max_freq, scaling_min_freq,

scaling_setspeed, depending on the governor in use) associated to the frequency

modification.

The same approach can be utilised for when COUNTDOWN exits the MPI phases for which it

speculates if it is feasible to increase the current frequency, reaching the maximum one

available on the system, to speed up the TTS of the underlying application. In this case, a

similar DDS data type to the previous one will be sent to the NM, containing a hint for the

maximum frequency at which the job runs. If the NM estimates that that tip is still aligned

with its power capping methodology, then it could apply it.

In all cases however, COUNTDOWN will continue its work, using the frequency for the MPI

and APPLICATION events that it will find available on the system.

In Figure 20, a schematic illustration is reported on how easily the REGALE library can be

used by the different tools (they need just the header and the library). In the specific case of

COUNTDOWN, after linking this library we can use the method Regale_publish to send the

desired frequency to all the subscribers listening for its specific topic. Another method,

Regale_create_publisher, must be called during the initialization phase of Countdown, to

store a publisher entity and easily later use it, to publish the frequency values hinted by

COUNTDOWN.

48



D3.2 REGALE Prototype

Figure 20: Representation of how REGALE library can be used in the interaction among the

JM (COUNTDOWN) and the NM

Figure 20: Dynamic linking of COUNTDOWN + REGALE library

ExaMon extensions for supporting FastDDS
As a data provider, ExaMon offers several ways of accessing data. The main interfaces are the

MQTT bus for streaming and real-time applications and a RESTful interface for accessing data

49



D3.2 REGALE Prototype

in batch mode. In this section, a possible implementation of the interface between MQTT

and DDS will be described.

Table 3 shows a concise comparison of the two protocols:

DDS MQTT

Communication
Model

Decentralised
publish-subscribe

Broker-based publish-subscribe
(request-response available in
MQTT v5)

Data-Centric vs.
Message-Based Data-centric Message-based

QoS Levels Extensive and configurable Three levels: 0, 1, and 2

Scalability and
Extensibility

Supports scalability and
extensibility

Lightweight and suitable for
resource-constrained devices

Real-Time
Capabilities

Comprehensive and
configurable

Supports real-time
communication

Implementation
Complexity

More complex and
feature-rich Simpler and more lightweight

Widely Used in
Industrial, mission-critical
systems, Internet of Things
(IoT)

IoT and machine-to-machine
(M2M) communication

Table 3: FastDDS vs MQTT protocol

The notable differences are that DDS does not rely on a centralised broker to manage the

data flow. This is because DDS is focused on data exchange unlike MQTT, which instead uses

the message as a discrete unit of communication. This allows DDS to have more control over

properties such as QoS and real-time communication capabilities at the expense of more

complex implementation. For example, for reliable communication and thus for the

management of the handshaking protocol, DDS relies on all agents participating in the data

exchange. In MQTT, this complexity is left to the broker. For example, any client that has to

send a piece of data to thousands of receivers only has to be concerned with the single

communication with the broker. The cost of this simplicity is transferred to the fact that the

broker, if not properly managed, can represent a single point of failure.

MQTT-DDS Bridge: Generally, communication between applications adhering to different

protocols can take place via a component called a “bridge”. The bridge takes care of the

50



D3.2 REGALE Prototype

management of both protocols and how messages are to be translated during the transition

from one to the other domain.

The implementation of the MQTT-DDS bridge, as represented in Figure 21, is placed on the

application layer. It is a software component that acts simultaneously as a publisher and

subscriber on both protocols. In more detail, we can summarise the elementary operations

performed by this component as follows:

1. Connection:

a. MQTT: The bridge component establishes a connection to the MQTT broker

and subscribes to the topics for incoming and outgoing data flow.

b. DDS: It also connects to an existing DDS domain allowing it to interact with

DDS publishers and subscribers

2. Message Translation and delivery:

a. MQTT: When a MQTT message is received, the bridge translates it into a

format compatible with the DDS data model and delivers it to the DDS

domain. This operation is a mapping between the MQTT and DDS topics and

data payloads.

b. DDS: When a DDS message is received it is mapped to a MQTT topic and

payload and delivered to the MQTT domain.

c. Other than the message payload, the bridge can optionally manage the

translation of other parameters like the QoS.

ExaMon to DDS data mapping: Message translation consists of mapping the topics and

payloads of the two protocols. In this section, we first see an in-depth description of the

individual elements, then we see a possible mapping using the ExaMon data model.

MQTT Topic: MQTT topics are simple strings through which complex hierarchies can be

represented using the special character “/”. For example, a valid topic can be:

“facility/sensors/temperature”.

51



D3.2 REGALE Prototype

Figure 21: Representation of DDS and MQTT interactions

MQTT Payload: The MQTT messages represent the payload itself. The protocol specification

gives no indication of its structure or data type. It may be a simple string, a complex

serialised data structure (JSON/XML), or a binary data structure. Moreover, it can change

radically within the same application without any implication on the communication layer

and the handling (marshalling/unmarshalling) is totally up to the individual application.

DDS Topic: In DDS, topics are objects that generally contain a name and a user-defined data

type that represents the structure of the data managed by the topic instance. Generally, the

topic name is a simple or structured string describing the associated data.

DDS Payload: DDS protocol messages are strictly defined by the data structure associated

with the topic on which they are intended to communicate. The data type can be a

structured record, a defined IDL (Interface Definition Language) type, or a custom-defined

data structure. This ensures that, given a topic, there can be no uncertainties about the

interpretation of the data.

ExaMon Data Model and Mapping

ExaMon focuses on the management of a wide variety of data using the MQTT protocol. This

is controlled by the definition of the data model, which is mainly reflected in the definition of

the MQTT topic and payload [15].

52



D3.2 REGALE Prototype

ExaMon's topic format follows the MQTT protocol guidelines and expresses a hierarchy of

elements (key/value) to describe the associated data. An example of a topic defined

according to the ExaMon specification might be the following:

org/testorg/cluster/testcluster/node/testnode00/plugin/ipmi_pub/chnl/data/units/W/power

It represents the topic on which is possible to find the power measurements (in Watts) of the

“testnode00” node installed in the “testcluster” cluster of the “testorg” organisation.

The corresponding MQTT payload, as defined in ExaMon is as follows:

723.0;1658832078.001

It is a string in CSV format where “723.0” is the value, “;” is the separator, and

“1658832078.001” is the timestamp.

The mapping of this data model onto the DDS protocol consists mainly of defining the data

structure associated with the topic that will receive the data from the MQTT domain. To do

this, we follow the DDS standard and define the topic via the Interactive Data Language (IDL)

language [16].

Figure 19: Design of a Struct of DDS used to map the Examon Data Model

In this implementation we follow the most generic approach possible, trying to support in

DDS a large heterogeneity of data as it is handled by MQTT in ExaMon.

In particular, we define a generic data structure called MqttMsg which contains two fields

within it:

● value: the string type member to which the value field of the MQTT payload will be

mapped

● timestamp: a float type field to which the timestamp field of the MQTT payload will

be mapped.

53



D3.2 REGALE Prototype

In this context, the “value” field of the MQTT payload is a string representing a number or a

text depending on the data source type. For this reason, it is up to the DDS application to

translate the “value” member of the data structure into the appropriate data type.

Communication Sequence
In this section, we describe a sequence of steps that makes up the data communication

between MQTT and DDS.

1. During the initialization of the bridge, the connection is made to the MQTT broker

and the DDS domain of interest.

2. After initialization, the bridge connects to the MQTT broker and subscribes to the

topics of interest. For example, to subscribe to all topics of a given organisation, the

MQTT protocol wildcard "#" can be used. For example "org/testorg/#".

3. When an MQTT publisher posts a message on the broker, this is automatically passed

on to the bridge.

4. The bridge obtains the payload and the complete topic associated with it. The

payload is decoded according to the pattern defined in the IDL language and

published in the DDS domain using the same unmodified topic.

5. Any DDS subscriber interested in the data of a certain MQTT topic will subscribe to

the equivalent DDS topic with the same name.

6. The data will be obtained and decoded according to the data structure defined in the

IDL file.

Spack Deployment

To compile and run the REGALE library, few dependencies are required. So, the REGALE

library needs:

● eProsima FastDDS: https://github.com/eProsima/Fast-DDS

eProsima FastDDS also depends from the following libraries:

● ASIO: https://think-async.com/Asio

● TinyXML2: http://grinninglizard.com/tinyxml2

● OpenSSL: https://www.openssl.org

● foonathan-memory: https://memory.foonathan.net

● eProsima FastCDR: https://github.com/eProsima/Fast-CDR

To simplify the deployment of the REGALE library and all its dependencies, we leverage on a

well-known package manager called Spack [17]. Spack is a versatile package manager that

enables the construction and installation of various software versions and setups across

multiple platforms. It is compatible with Linux, macOS, and numerous supercomputers (it’s

also the official package manager of Leonardo system at CINECA [18] and of SuperMUC-NG

at LRZ [19]).

54

https://github.com/eProsima/Fast-DDS
https://think-async.com/Asio
http://grinninglizard.com/tinyxml2
https://www.openssl.org
https://memory.foonathan.net
https://github.com/eProsima/Fast-CDR


D3.2 REGALE Prototype

For this reason, we developed Spack packages for all the REGALE dependencies and we

reintegrated in the official release of Spack. In the following, we report all the Pull Request

(PR) that we made for the dependencies of the REGALE library to the official Spack project:

● eProsima FastDDS, eProsima FastCDR, foonathan-memory:

https://github.com/spack/spack/pull/38079

● ASIO: already supported on Spack

● TinyXML2: already supported on Spack

● OpenSSL: already supported on Spack

After that, we also developed a Spack package for the REGALE library, at the time of this

deliverable we are waiting the final approvation of the PR:

https://github.com/spack/spack/pull/38444

When the PR of REGALE library will be accepted, to install the REGALE library and all its

dependencies will needs only few shell commands with Spack:

55

https://github.com/spack/spack/pull/38079
https://github.com/spack/spack/pull/38444


D3.2 REGALE Prototype

6. Conclusions and Future Works

In this document we have presented how the integration paths of the different tools have

proceeded, in comparison with the previous deliverable. A more technical approach has

been used, to underline this behaviour and emphasise the software engineering part, that

characterises all the tools involved.

Moreover, a new engineering and software effort has been suggested: the REGALE library,

which aims to be a standardised middle layer for the power management and energy

efficiency software stacks. Its intention is to propose a standardised approach following

predefined API interfaces; in this way, no matter what are the actual implementations

(COUNTDOWN, EAR, EXAMON, OAR, BEO, DCDB,...) of all the REGALE entities (Job Manager,

Node Manager, System Manager, Monitoring System,...): these last one will be always able to

interact among them, as long as their current (or future) implementations respect, and

implement, the REGALE library interfaces.

Future works will focus on extending the integration of the REGALE library with the tools

previously presented, following a standardised approach which aims to be the first of its

kind.

56



D3.2 REGALE Prototype

6. GitLab Links

In Table 4, we report the link of the GitLab repositories of REGALE Power Stack tools.

Tools Integration Scenario GitLab link

System Power Manager,

Node Manager

IS#1, and IS#2 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/beo

Resource and Job
Management System

IS#1, IS#2, and IS#3 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/oar

Node Manager IS#2, and IS#3 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/ear

Job Manager IS#2, and IS#3 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/countdown

Monitor IS#1, IS#2, and IS#3 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/examon_server

Monitor IS#1, IS#2, and IS#3 https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/dcdb

REGALE library ALL https://gricad-gitlab.univ-grenoble-alpes.fr/regale

/tools/regale

Table 4: GIT repositories of REGALE tools

57

https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/beo
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/beo
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/oar
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/oar
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/countdown
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/countdown
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/examon_server
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/examon_server
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/dcdb
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/dcdb
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/regale
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/regale


D3.2 REGALE Prototype

7. References

[1] https://mqtt.org/mqtt-specification/

[2] https://variorum.readthedocs.io/en/latest/

[3]https://www.esol.com/embedded/services/ros_engineering_services.html?gclid=CjwKCAj

wyqWkBhBMEiwAp2yUFgYsicTubBZHNvy0XFhW39oyAne2eapVLd86NgZCvShNhhAQomEe4B

oCvq0QAvD_BwE

[4] https://fast-dds.docs.eprosima.com/en/latest/index.html

[5] https://github.com/EEESlab/countdown

[6] D. Cesarini, A. Bartolini, P. Bonfà, C. Cavazzoni and L. Benini, "COUNTDOWN: A Run-Time

Library for Performance-Neutral Energy Saving in MPI Applications," in IEEE Transactions on

Computers, vol. 70, no. 5, pp. 682-695, 1 May 2021, doi: 10.1109/TC.2020.2995269.

[7] D. Cesarini, A. Bartolini, A. Borghesi, C. Cavazzoni, M. Luisier and L. Benini, "Countdown

Slack: A Run-Time Library to Reduce Energy Footprint in Large-Scale MPI Applications," in

IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 11, pp. 2696-2709, 1 Nov.

2020, doi: 10.1109/TPDS.2020.3000418.

[8]https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-ener

gy-management-framework-hpc

[9] Corbalan, Julita, and Luigi Brochard. "EAR: Energy management framework for

supercomputers." Barcelona Supercomputing Center (BSC) Working paper (2019).

https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-docum

entation/ear.pdf

[10] https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html

[11] Chakraborty, Mainak, and Ajit Pratap Kundan. "Grafana." Monitoring Cloud-Native

Applications: Lead Agile Operations Confidently Using Open Source Software. Berkeley, CA:

Apress, 2021. 187-240.

[12]https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear/-/blob/main/src/slurm_plug

in

[13] https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear/-/tree/main/src/report

[14]https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/dcdb/-/tree/master/dcdbpusher

/sensors

[15] https://bit.ly/3qT17Yj

[16]https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/instances.html#d

ds-layer-topic-instances

[17] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., De Supinski, B. R., &

Futral, S. (2015, November). The Spack package manager: bringing order to HPC software

58

https://mqtt.org/mqtt-specification/
https://variorum.readthedocs.io/en/latest/
https://www.esol.com/embedded/services/ros_engineering_services.html?gclid=CjwKCAjwyqWkBhBMEiwAp2yUFgYsicTubBZHNvy0XFhW39oyAne2eapVLd86NgZCvShNhhAQomEe4BoCvq0QAvD_BwE
https://www.esol.com/embedded/services/ros_engineering_services.html?gclid=CjwKCAjwyqWkBhBMEiwAp2yUFgYsicTubBZHNvy0XFhW39oyAne2eapVLd86NgZCvShNhhAQomEe4BoCvq0QAvD_BwE
https://www.esol.com/embedded/services/ros_engineering_services.html?gclid=CjwKCAjwyqWkBhBMEiwAp2yUFgYsicTubBZHNvy0XFhW39oyAne2eapVLd86NgZCvShNhhAQomEe4BoCvq0QAvD_BwE
https://fast-dds.docs.eprosima.com/en/latest/index.html
https://github.com/EEESlab/countdown
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear/-/blob/main/src/slurm_plugin/erun.c
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear/-/blob/main/src/slurm_plugin/erun.c
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/ear/-/tree/main/src/report
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/dcdb/-/tree/master/dcdbpusher/sensors
https://gricad-gitlab.univ-grenoble-alpes.fr/regale/tools/dcdb/-/tree/master/dcdbpusher/sensors
https://bit.ly/3qT17Yj
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/instances.html#dds-layer-topic-instances
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/instances.html#dds-layer-topic-instances


D3.2 REGALE Prototype

chaos. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (pp. 1-12).

]18] https://www.hpc.cineca.it/software/spack

[19] https://spack.io/lrz-using-spack/

[20] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of

reusable object-oriented software. Pearson Deutschland GmbH.

[21] ISO/IEC. (2020). ISO International Standard ISO/IEC 14882:2020(E) – Programming

Language C++. Geneva, Switzerland: International Organization for Standardization (ISO).

[23] Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot Operating

System 2: Design, architecture, and uses in the wild. Science Robotics, 7(66), eabm6074.

[24] Tarkoma, Sasu. Publish/subscribe systems: design and principles. John Wiley & Sons,

2012.

[25] Madec, G., Bourdallé-Badie, R., Bouttier, P. A., Bricaud, C., Bruciaferri, D., Calvert, D., ... &

Vancoppenolle, M. (2017). NEMO ocean engine.

[26] Dongarra, J. J., Luszczek, P., & Petitet, A. (2003). The LINPACK benchmark: past, present

and future. Concurrency and Computation: practice and experience, 15(9), 803-820.

59

https://www.hpc.cineca.it/software/spack
https://spack.io/lrz-using-spack/

