
H2020-JTI-EuroHPC-2019-1

REGALE: An open architecture to equip next generation HPC

applications with exascale capabilities

Grant Agreement Number: 956560

D2.3

Final integration of sophisticated policies in the REGALE prototype

Final

Version: 1.0

Author(s): Pierre-François Dutot, Francesco Antici, Eishi Arima, Andrea Bartolini,

Yiannis Georgiou, Mohsen Seyedkazemi Ardebili, Mathieu Stoffel and Nikolaos Triantafyllis

Contributor(s): Lluis Alonso

Date: 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Project and Deliverable Information Sheet

REGALE
Project

Project Ref.№: 956560

Project Title: REGALE

Project Web Site: https://regale-project.eu

Deliverable ID: D2.3

Deliverable Nature: Software

Dissemination Level: PU *

Contractual Date of Delivery:

31 / 03 / 2024

Actual Date of Delivery:

12 / 04 / 2024

EC Project Officer: Evangelos Floros

* - The dissemination levels are indicated as follows: PU = Public, fully open, e.g. web; CO =

Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified,

information as referred to in Commission Decision 2001/844/EC.

Document Control Sheet

Document

Title: Final integration of sophisticated policies in the REGALE prototype

ID: D2.3

Version: 1.0 Status: Final

Available at: https://regale-project.eu

Software Tool: Google Docs

File(s): REGALE_Deliverable_2.3.pdf

Authorship

Written by:

Pierre-François Dutot, Francesco Antici,
Eishi Arima, Andrea Bartolini, Yiannis
Georgiou, Mohsen Seyedkazemi Ardebili,
Mathieu Stoffel and Nikolaos Triantafyllis

Contributors: Lluis Alonso

Reviewed by: Lluis Alonso, Yiannis Georgiou

Approved by: Georgios Goumas

REGALE - 956560 1 12.04.2024

https://regale-project.eu
https://regale-project.eu

D2.3 Final integration of sophisticated policies in the REGALE prototype

Document Status Sheet

Version Date Status Comments

0.1 08.11.2023 Draft Initial version

0.2 27.03.2024 Draft Internal review

1.0 12.04.2024 Final Corrections

Document Keywords

Keywords:
REGALE, HPC, Exascale, Sophistications, Performance, Energy
Efficiency, Power Constraints

Copyright notice:

© 2024 REGALE Consortium Partners. All rights reserved. This document is a project
document of the REGALE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the REGALE partners, except as
mandated by the European Commission contract 956560 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as owned by the respective holders.

REGALE - 956560 2 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Table of Contents

1 Introduction 6

2 Performance and Throughput 9

2.1 Co-scheduling for throughput and application coupling at the node level 9
2.2 Co-scheduling within multicore processing units 18
2.3 Elastic Resource Management 23
2.4 Data-aware resource allocation 35

3 Energy Savings 46

3.1 Moldability for energy efficiency 46
3.2 ML-based User-Labelling of the Job 50
3.3 Integration of ML Models in Production System 51
3.4 Node level power controls (BDPO) 57
3.5 Thermal and Power control on a node level (ControlPULP) 65

4 Under Power Constraints 80

4.1 System Level Power-Capping with OAR 80
4.2 Application level Power-Capping with BEO 86

5 Combining Sophistications 97

REGALE - 956560 3 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Executive Summary

This final report details the REGALE project's achievements for optimised energy
aware resource utilisation in HPC systems. The sophistications are designed with the
project's three key objectives in mind: effective resource utilisation, broad
applicability, and user-friendly supercomputing services.

Work Package 2 (WP2) “Sophisticated resource allocation and management“ is
the key focus of this report. WP2 subtasks explored various aspects, which are
presented in this report with three main objectives, improving performance and
throughput, providing energy savings, and achieving maximum efficiency under
power constraints.

This final report provides a valuable resource for those interested in the REGALE
project's achievements and how they contribute to improved resource allocation and
management for High-Performance Computing systems.

REGALE - 956560 4 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

List of Abbreviations and Acronyms

Abbreviation / Acronym Meaning

AAPC Application Aware Power Capping

CPU Central Processing Unit

DVFS Dynamic voltage and frequency scaling

EPI European Processor Initiative

FW Firmware

GPU Graphical Processing Unit

HLC High Level Controller

HPC High Performance Computing

HW Hardware

I/O Input/Output

LLC Low Level Controller

ML Machine Learning

MPI Message Passing Interface

OS Operating System

OSPM Operating System Power Management

PMI Power Management Interface

RJMS Resource and Job Management System

SCMI System Control and Management Interface

SPM System Power Manager

SW Software

BDPO, BEO, EAR, OAR, Ryax are software names and not acronyms.

REGALE - 956560 5 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

1 Introduction

The REGALE project aims to establish an open architecture, propose a prototype software

stack, and integrate advancements into various components of the stack to optimize

resource utilization. This final report details the project's improvements to its different

components throughout its lifecycle.

The report outlines the sophistications developed in relation to the project's three strategic

objectives, which can be simply summarized here:

● Strategic Objective 1 (SO1): Effective Resource Utilization

○ Improved application performance

○ Increased system throughput

○ Minimized performance degradation under power constraints

○ Decreased energy to solution

● Strategic Objective 2 (SO2): Broad Applicability

● Strategic Objective 3 (SO3): Easy and Flexible Use of Supercomputing Services

For more details on these objectives and for a description of the Regale Architecture,

Prototype and Use Cases, readers are invited to read Deliverable 1.3. This report presents the

progress made in Work Package 2 (WP2), which concentrates on sophisticated resource

allocation and management. The various subtasks within WP2 address distinct aspects of

resource allocation, including co-scheduling, moldability, and power management.

As this deliverable is meant for the general public, we will not present a simple collection of

tasks, but rather structure the results along three main topics, in connection to the strategic

objectives. The first of these topics, detailed in Section 2, is the improvement of application

performances, and global throughput (this can be viewed as globally improving the number

of jobs per second). The different subsections are different ways to improve this objective.

First, we explore co-scheduling for enhanced throughput and application coupling at the

node level. In this, a machine learning-based approach is used to optimize resource

allocation in HPC systems by co-scheduling multiple applications with different resource

requirements on the same compute nodes. The method also involves determining the most

suitable allocation policy (e.g. compact or spread allocation) for each application.

Then, we look at co-scheduling within multicore processing units. This subsection details a

novel co-scheduling strategy that incorporates machine learning for automated resource

allocation in heterogeneous HPC systems that include CPUs and GPUs. The aim is to assign

resources based on specific job requirements, balancing individual job needs with overall

system efficiency.

The next approach is elastic resource management with BeBiDa. This subsection explores

BeBiDa, a system designed to enable elastic resource management for HPC systems,

REGALE - 956560 6 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

particularly beneficial for Big Data workloads with dynamic resource requirements. The core

concept of BeBiDa revolves around leveraging the prolog/epilog mechanisms of HPC

resource managers. This allows for dynamic integration and removal of HPC nodes from a

Kubernetes cluster. When an HPC job is submitted, the HPC node it occupies is detached

from the Kubernetes cluster, effectively making it unavailable for Big Data jobs. Once the HPC

job completes, the node is seamlessly re-integrated into the Kubernetes cluster, enabling Big

Data jobs to utilize its resources once again. In this context, specific contributions provided

new optimization techniques to guarantee the successful termination of Big Data jobs in a

timely manner.

Finally, data-aware resource allocation has been investigated and implemented as a hybrid

workflow scheduling. The approach for handling hybrid workflows utilizes traditional HPC job

submission queues, alongside additional resources requested in a flexible "best-effort"

queue. This allows an improved QoS for workflow by allocating dedicated resources, while

using all idle resources whenever possible.

In section 3, energy savings are considered. More broadly this can be seen as an

improvement in jobs per watt. First we look at moldability for energy efficiency: This research

investigates moldability as a tool for improving energy efficiency in HPC systems. Moldability

empowers resource managers to consider multiple configurations for a single job

submission, enabling exploration of energy-efficient resource allocation options. An initial

integration of energy-aware moldability policies in a resource management system is

proposed. This integration utilizes a score function to evaluate configurations and select the

one with the most favorable energy efficiency.

A novel approach for real-time power management in HPC data centers is then presented.

This approach leverages machine learning models to predict job power consumption,

eliminating the need for complex job power characterization. The proposed technique

utilizes user data such as username, job name, and requested hardware specifications to

predict power consumption.

The report then details the integration of machine learning models into a comprehensive

production system for HPC data centers. This system incorporates a multi-part framework

with a monitoring subsystem that gathers sensor data to fuel the ML operation subsystem.

Here, Docker containers and Kubernetes orchestrate the automated deployment, training,

and utilization of the ML models. The trained models predict power consumption, enabling

real-time optimization and resource management.

At the node level, optimizing GPU energy efficiency with BDPO integration is studied,

exploring the integration of a runtime power management tool, BDPO, with GPUs for

improved energy efficiency during HPC application execution. Similarly for CPUs, the

utilization of on-chip controllers for thermal and power management within the REGALE

prototype is detailed.

REGALE - 956560 7 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Section 4 investigates two techniques for managing power consumption in High-Performance

Computing (HPC) systems under power constraints (often called power capping) while

minimizing performance impact.

The first approach tackles power-capped situations by complementing the traditional

First-Come-First-Served (FCFS) scheduling. It empowers users to designate jobs as EcoJobs,

indicating their tolerance for running slower under power limitations. When power

limitations are imposed, the resource manager prioritizes slowing down EcoJobs using

Dynamic Voltage and Frequency Scaling (DVFS) techniques. This will reduce the power

consumption of jobs under power caps, significantly reducing the number of jobs killed due

to power limitations.

The second technique, Application-Aware Power Capping (AAPC), automatically addresses

performance degradation caused by traditional power capping, which can significantly slow

down compute-bound tasks. AAPC dynamically adjusts power budgets based on measured

application characteristics like compute or memory intensiveness. By prioritizing

compute-bound jobs (more susceptible to slowdowns) with efficient power allocations, AAPC

aims to improve overall job throughput. The system integrates seamlessly with existing HPC

software to leverage job information and manage power capping on individual compute

nodes.

The power budget allocation algorithm prioritizes full power for memory-bound jobs,

followed by mixed jobs. Compute-bound jobs have their power reduced only as a last resort.

The study also addresses challenges associated with enforcing power caps due to delays

between setting a cap and its actual application on compute nodes. To mitigate these delays,

AAPC prioritizes stricter caps first and ensures enforcement only after reducing core

frequencies.

Finally, in Section 5 we explore the relations between all the proposed sophistications and

their position in the REGALE Architecture detailed in Deliverable 1.3.

While the presentation focuses on the measurable improvements, a strong commitment to

applicability and ease of use as defined in strategic objectives 2 and 3 was always present

during the project. As a result most of the processes detailed in this report are fully

transparent to the users.

Note to the reviewers: As this report is reporting on work spanning the whole project

duration, some parts were already complete for the intermediate report D2.2. Specifically,

Subsection 2.4 is almost identical to Subsection 2.4 in D2.2, and Subsection 3.4 has a few

common pages with Subsection 2.3.B in the same D2.2 report. Quantitative and qualitative

evaluations of the sophistications are presented in Deliverable 1.4.

REGALE - 956560 8 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

2 Performance and Throughput
2.1 Co-scheduling for throughput and application coupling at the node level

Motivation and problem definition

As we move towards exascale computing, the demands on process management in terms of

flexibility and efficiency increase. Running multiple applications concurrently on a single

node presents a potential solution to enhance resource utilization1,2. Moreover, today's

processor manufacturers boost performance by increasing the number of cores within each

CPU. However, not all high-performance computing (HPC) applications can fully leverage all

cores on a single node, even when they scale across thousands of nodes. In such cases,

resource sharing between applications on nodes can effectively distribute the load across

various resources, improving overall utilization3.

The typical and most straightforward approach to resource management in modern

supercomputing systems is to allocate full compute nodes to the applications. This means

that a job requesting x processes from a system with y cores per node will receive ⎡x/y⎤
nodes to execute. While this scheme effectively ensures that tasks from diverse users do not

negatively impact each other's performance, and additionally it is easy to implement, it

comes at a substantial expense to system throughput and energy efficiency4. This is notably

evident in the process of allocating a memory-bound application, which may face significant

scalability problems. Quite importantly, several HPC applications are reported to have low

operational intensity and thus are bound by the limited access to main memory. This family

of applications would benefit from a resource allocation scheme that would provide more

memory bandwidth, thus more memory links, i.e. in the concepts of resource management

being spread in more nodes. Another study5 emphasizes the redistribution of memory-bound

applications across multiple nodes to alleviate performance bottlenecks and the co-location

of jobs in a manner compatible with available resources, while another study6 evaluates the

co-allocation policy scheme in a simulated environment, indicating that co-scheduling has

the potential to be a more efficient way to schedule jobs on high-end machines in both

turnaround time and system and component utilization. On the other hand7, applications

that spend a significant part of their execution time in communication may be sensitive to

7 Bhatele, Abhinav, et al. "There goes the neighborhood: performance degradation due to nearby jobs." Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis. 2013.

6 Hall, Jason, et al. "Evaluating the Potential of Coscheduling on High-Performance Computing Systems." Workshop on Job
Scheduling Strategies for Parallel Processing. Cham: Springer Nature Switzerland, 2023.

5 Tang, Xiongchao, et al. "Spread-n-share: improving application performance and cluster throughput with resource-aware
job placement." Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 2019.

4 Breslow, Alex D., et al. "The case for colocation of high performance computing workloads." Concurrency and
Computation: Practice and Experience 28.2 (2016): 232-251.

3 Frank, Alvaro, Tim Süß, and André Brinkmann. "Effects and benefits of node sharing strategies in hpc batch systems." 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019.

2 Brinkmann, André. "Co-scheduling: prospects and challenges." Co-Scheduling of HPC Applications 28.1 (2017): 20.

1 Trinitis, C., and J. Weidendorfer. "Allocation-Internal Co-Scheduling." Co-Scheduling of HPC Applications 28 (2017): 46.

REGALE - 956560 9 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

the number of nodes that they are allocated to, probably preferring to be mapped on a

minimum number of nodes (although this may depend on the communication pattern and

the underlying network setup). Finally, there exist applications that present no significant

variation in their execution time due to different allocations in nodes. Figure 1 illustrates the

recommended resource allocation strategy for the three application categories, specifically

those that favor “spread”, “compact”, or “no preference”.

Figure 1: Application categories based on resource allocation policy. In the “compact” category the application’s
processes are ideally packed together. In the "Spread" category the application’s processes are assigned to half

of the available cores in each CPU socket. In the “No preference” category the application’s processes are
assigned in a best-effort concept across all available cores.

Assumptions for a solution

The proposed approach revolves around a multi-step process aimed at optimizing resource

allocation policies’ assignments for high-performance computing (HPC) systems. The solution

assumes that the allocation preference of the application is known to the system. This can be

achieved in two ways, either the user explicitly requests for an explicit scheme, or the system

is able to collect information from prior, historical runs of the application, and is able to

associate previous runs with the forthcoming one. For this second case, the strategy entails

the collection of performance counters from actual HPC benchmarks (targeted to

implementations under the MPI standard) operating within real-world HPC systems. These

performance counters serve as crucial data inputs for the subsequent step, which involves

training a predictive model. This model leverages the collected performance counter data to

make informed predictions about the most suitable allocation policy for new, incoming

applications with known performance counters. In cases where no pre-existing data is

available for a specific application, a generic allocation scheme is applied.

Determination of the preferred resource allocation policy

Resource allocation policies ensure that computational resources are assigned optimally,

maximizing the performance of HPC systems while minimizing operational expenses. By

fine-tuning the allocation of resources, HPC facilities can reduce both power consumption

REGALE - 956560 10 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

and the associated cooling costs. This not only makes HPC operations more cost-effective but

also aligns with the broader goals of sustainability in the face of escalating energy demands.

Table 1 serves as an informative reference, offering comprehensive descriptions of the

various resource allocation policies, thus providing a detailed understanding of how resource

distribution is managed.

Table 1: Resource allocation policies definition.

No Preference

The allocation strategy is designed to first fill non-empty nodes,
prioritizing those with the fewest available cores, and it only resorts to
occupying empty nodes when no other options are available. This
approach may lead to a combination of both occupied and unoccupied
nodes, ensuring hardware-independent compatibility across
heterogeneous clusters. This policy applies to jobs with no significant
performance dropoff (e.g. compute-intensive applications).

Compact

This policy ideally packs processes together and fills up the minimum
required number of nodes, creating the least possible node
fragmentation. This intends to improve the performance of applications
that invoke a large number of message exchanges. The allocation policy
places emphasis on occupying initially vacant nodes, with a primary focus
on nodes that reduce fragmentation by offering the maximum available
cores. Only after considering empty nodes does it proceed to allocate
resources to non-empty nodes with the priority to those that further
minimize fragmentation. This strategy can result in a combination of both
occupied and unoccupied nodes, making it versatile for use across
hardware-independent, heterogeneous clusters. It stands in contrast to
the "No Preference" allocation policy by explicitly favoring nodes that
reduce fragmentation.

Spread

This policy allocates only half of the available cores in each CPU. The
subsequent larger number of used nodes (i.e. memory links) provides a
higher memory bandwidth for the application. This sparse allocation
scheme is suitable for applications with higher memory demands. This
variant of the allocation policy mirrors the “compact” approach but
incorporates a new constraint -each step accounts for only half of a CPU
socket. In cases where the requested cores are fewer than half the cores
available in a CPU socket, the policy avoids spreading them across
multiple sockets. Note that as the number of cores in a typical HPC node
rises, we expect that this policy can be further enhanced to assume other
allocation portions (most probably, quarters, eights, etc). For the sake of
simplicity, in our current solution we work with half CPU allocation and
leave the other options for future work.

REGALE - 956560 11 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Performance counters and MPI time collection

Performance Counters (PCs) are a set of hardware-based or software-based metrics and

counters that provide detailed information about the performance and behavior of a

computer system, particularly during the execution of applications and workloads. These

counters monitor various aspects of system performance, including CPU utilization, memory

usage, I/O operations, cache hits, network traffic, and more. PCs are crucial tools for

understanding and optimizing the performance of HPC applications and systems.

Additionally, attributes allocated to MPI (Message Passing Interface) operations -which are

essential for communication and coordination between parallel processes within the

application’s environment- can indicate a great impact on the overall performance of parallel

applications. Due to their significant importance both metrics from PC and MPI Attributes are

collected. The harvesting is systematically performed through the use of “perf” (a

well-known and powerful performance analysis and profiling tool in Linux systems) and

“mpiP” (a profiling tool designed for the MPI standard) utilities during runs under the

“compact” resource allocation policy (default policy). The resulting data is conveniently

organized and stored in CSV format file. The entire data collection and storage process is

automated, sparing users from the intricacies involved. Users can effortlessly leverage these

automated scripts by including the required file in their submission batch script, seamlessly

integrating data collection into their workflow. These collected metrics serve as vital inputs

for machine learning models, enabling data-driven insights and optimization in performance

analysis. The metrics that are currently collected and used in the ML model training are the

following:

● avg_total_time: Represents the average total time of the execution of a given

application.

● compute_time: Signifies the time spent on computational tasks.

● mpi_time: Indicates the time allocated to MPI (Message Passing Interface)

operations.

● ipc: Refers to the instructions per cycle, a measure of CPU efficiency.

● dp_flops_per_node: Represents the double-precision floating-point operations per

second per node.

● bw_per_node: Denotes the bandwidth per node, typically a measure of data transfer

rate.

In our OAR3 implementation, the PostgreSQL table -shown in Figure 2- includes a column

named “type” that signifies the specific parallel standard used during application execution

and the corresponding metrics gathered. This functionality is designed for future flexibility,

allowing the referencing of metrics for alternative parallel standards, such as OpenMP or

hybrid OpenMP-MPI configurations. In this example, the type of applications in the table is

“mpi”.

REGALE - 956560 12 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 2: A view of the PostgreSQL table integrated within the OAR3 database, depicting the collected

Performance Counters and MPI time metrics. Data is produced by benchmarks’ runs in actual HPC clusters. The

implementation has a placeholder code to ingest new data to the table.

Speedup heatmap generation

Co-scheduling, as a technique, entails the placement of pairs of processes from different jobs

on common CPU sockets, aiming to enhance system throughput and subsequently greater

energy efficiency. Colocating pairs of different jobs on a shared set of nodes within a

supercomputer environment was used to generate a Speedup heatmap. A heatmap is a data

visualization technique that represents data values as colors in a two-dimensional matrix.

Our experiments involve running applications both solo (“compact”) and in pairs

(“co-scheduled”) repeatedly for 10 minutes to generate multiple run logs. Speedup is then

calculated as the ratio of the execution time of the “compact” to the execution time of the

application in a co-scheduled state. Co-scheduling is performed by applying the “spread”

resource allocation scheme for both applications and concurrently co-located them under

the same compute nodes subset. For instance, assuming two applications A and B of x MPI

processes each. The applications will be submitted on the same compute nodes with the

allocation scheme of the “spread” policy where half of the CPU sockets will be filled by each

application. This will lead to a full CPU socket capacity allocation, by heterogeneous MPI

processes. Concerning the SpeedupAB it would be the ratio of the execution time TA of

application A in a “compact” allocation policy to the execution time of application A

co-scheduled with application B TAB. A speedupAB of 2 means that application A runs two

times faster if it is co-allocated with application B instead of running under the “compact”

resource allocation policy.

REGALE - 956560 13 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Speedup heatmaps are continuously populated with data collected from the ARIS

supercomputer at GRNET8, and the MARCONI supercomputer at CINECA9, as depicted in

Figure 3. It illustrates speedup heatmaps corresponding to individual supercomputers,

showcasing results for identical pairs of the NAS Parallel Benchmarks10. The practical

observation suggests that co-scheduling confers advantages to the HPC system, leading to a

noteworthy 12% improvement in overall speed for both real-world HPC infrastructures, as

opposed to the default allocation policy (“compact”). This performance gain is quite similar

between these two HPC infrastructures, and it holds true despite variations in the

characteristics of the compute nodes and the interconnections between the nodes of the

clusters.

Figure 3: A view of the Speedup Heatmap per supercomputer for the same benchmarks co-schedulings. The

application name underlines the problem that it is solved (e.g. sp), the size of the problem (e.g. D) and the

number of MPI processes spawned (e.g. 256). As a significantly performance-gained example the co-scheduling

of sp.D.256 and ep.E.256 leads to an average of 54% faster execution of the sp.D.256 benchmark in both HPC

infrastructures, without reducing the execution time of the ep.E.256 benchmark as it was run under the

“compact” policy.

Machine Learning model creation

A Machine Learning (ML) model is a computational system that has undergone a training

process to learn patterns and relationships within data. During training, the model is exposed

to a dataset containing input data and their corresponding outcomes, and it adjusts its

internal parameters and algorithms to make accurate predictions or classifications. In our

work, in order to build the ML model, a small dataset of performance counters and MPI

attributes harvested from runs of the NAS Parallel Benchmarks and the SPEChpc 202111

applications under the “compact” allocation policy on the ARIS supercomputer, was used.

Each row is a fusion of two application's 6-feature set (avg_total_time, compute_time,

mpi_time, ipc, dp_flops_per_node, bw_per_node), forming a “Feature Vector”, and includes

11 https://www.spec.org/hpc2021
10 https://www.nas.nasa.gov/software/npb.html
9 https://www.hpc.cineca.it
8 https://hpc.grnet.gr

REGALE - 956560 14 12.04.2024

https://www.hpc.cineca.it
https://hpc.grnet.gr

D2.3 Final integration of sophisticated policies in the REGALE prototype

the corresponding co-scheduling speedup derived from the Speedup Heatmap, as shown in

Figure 4.

Figure 4: A representation of a row of the dataset that is used to train the ML model. The “Feature Vector” was

derived from runs under the “compact” allocation strategy, whereas the “y” is the speedup derived from a

co-schedule run between the respective applications.

A variety of linear, non-linear, and ensemble learning regression models from scikit-learn

Python library were trained on the dataset. The data was split into 70% for training and 30%

for testing. During the training phase, grid search was employed to optimize the model’s

hyperparameters, combined with a 5-fold cross-validation process. In the testing phase, the

performance of these models was assessed and compared using metrics such as RMS and

absolute error to evaluate their predictive accuracy. Our OAR3 implementation facilitates the

ingestion of diverse models into the database, offering flexibility in choosing how to utilize

them, as it is shown in Figure 5. Utilizing various ML models for predictions leverages their

individual strengths, leading to improved accuracy and robustness in predictive tasks. It also

allows for better adaptation to diverse data and problem scenarios.

Figure 5: A view of the Machine Learning model as it is stored in the OAR3 PostgreSQL database. The

implementation is able to store and load for use multi-purpose models.

A captivating aspect of the ML model's predictions can be seen in the scenario illustrated in

Figure 6. In the leftmost figure, you can observe a prediction generated by the ML model

using performance counters and MPI time data (“Feature Vector”) collected from the NAS

Parallel Benchmarks executed under the "compact" allocation policy on the Marconi

supercomputer. The figure on the right displays the real speedup heatmap achieved by

co-scheduling these specific NAS Parallel benchmark cases, as previously presented in Figure

5. As previously indicated, the ML model has been trained using data from runs of the NAS

Parallel Benchmarks and the SPEChpc 2021 applications conducted under the “compact”

allocation policy on the ARIS supercomputer. Another intriguing aspect is that the ML model

REGALE - 956560 15 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

accurately predicted the same average Speedup, despite having no other information

beyond the “Feature Vector” of the potential co-schedule.

Figure 6: A view of the predicted Speedup Heatmap vs the actual Speedup Heatmap in Marconi. The prediction

is performed by the ML model based on the “Feature Vector” gathered from the NAS Parallel benchmarks on

Marconi, under the “compact” policy.

Integration within OAR3

A Resource and Job Management System (RJMS) is a software stack used in

high-performance computing (HPC) to manage and coordinate the allocation of

computational resources and the scheduling of jobs submitted by users. A typical workflow

in RJMS consists of six core steps. Initially, it begins with job submission, where users provide

job details and request to run a job in the cluster. Following, jobs are then queued based on

various factors such as priority and fairness, and then resource allocation follows assigning

resources to jobs. Afterward, the job is executed, which involves running the task while

monitoring progress. Eventually, when the job is completed, the system updates the status

and provides the respective results. Finally, in the job cleanup step, the system manages

post-job tasks and resource releases.

REGALE - 956560 16 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 7: Life Cycle of job’s resource allocation policy assignment in OAR3 integration. The Admission Rule reads

the ML model with the corresponding Performance Counters and MPI time of the application and automatically

assigns the policy (i.e. compact, spread, no_preference) based on its prediction design.

Our work integration within OAR3 is covered in Figure 7, where the process flow of the

co-scheduling functionality is visually represented and subsequently subjected to a

step-by-step analysis. In the initial phase, a job is submitted by the user with the “oarsub”

command. Afterward, an Admission Rule (AR) -an OAR3 mechanism to perform tasks

between the user’s input and the job’s submission- analyzes the job's characteristics and

inquires about the availability of Performance Counters (PCs) specific to the given job. In

order to fulfil this task, the system establishes a connection with the OAR3 database to

ascertain the presence of these counters. If they are available, the system retrieves both the

PCs and a Machine Learning (ML) model from the OAR3 database. The PCs are then provided

to the ML model, which, based on its predictions, determines the allocation policy for the

job. This policy is set automatically by the AR as one of the following options: “compact”,

“spread”, or “no-preference”. In the case of the “spread” policy where double the resources

REGALE - 956560 17 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

are required, verification is conducted to ascertain whether the cluster possesses the

capacity to accommodate this allocation. If the cluster lacks the necessary capacity, the

allocation policy is converted to “compact” and the subsequent steps adhere to the standard

workflow. In instances where PCs cannot be located for the job, the “perf” and the “mpiP”

utilities are employed to encapsulate the job command and capture the relevant

performance metrics. Following this, the job is submitted, and when it is executed, an

epilogue script is executed on the server. This script collects the captured metrics and stores

them within the PCs’ table in the OAR3 database for that particular job name. Throughout

the entire process, all procedural steps are executed within the OAR3 frontend node. The

interactions with the OAR3 database are facilitated through the server node. In contrast, the

computational aspects are unequivocally executed on the compute nodes.

Within Table 2, we have encapsulated our contributions, showcasing the corresponding

source code alongside comprehensive information pertaining to the associated branches and

releases.

Table 2: Software implementation repositories.

Name Description Repository Branc
h

Release/
Tag

Based on
oar-team

Co-scheduling
at the node
level

Implementation of
new resource
allocation policies
with
auto-assignment
using trained ML
model

https://github.com/cslab-ntua
/oar3

master 3.0.0.dev1
0

2023/10

Ecosystem of
OAR3

All the necessary
dependencies,
libraries, and OAR3
setup’s
characteristics and
configuration

https://github.com/cslab-ntua
/regale-nixos-compose

main 1.1 2023/10

2.2 Co-scheduling within multicore processing units

Motivation

HPC clusters and supercomputers are becoming increasingly heterogeneous, consisting of

CPUs and GPUs. In fact, around 190 of top-class supercomputers ranked in the Top500 list

are GPU-equipped systems as of Nov 2023. Although exploiting GPU resources is

indispensable on such systems, which is because they offer a large fraction of computational

throughput and memory bandwidth, it is becoming more and more difficult to fully utilise

the entire resources within a GPU chip by one single program. The first reason for this is not

all GPU programs have sufficient parallelism to convert the available compute resources

inside a GPU into speedup, which is governed by the well-known Amdahl’s law. The second

REGALE - 956560 18 12.04.2024

https://github.com/cslab-ntua/oar3
https://github.com/cslab-ntua/oar3
https://github.com/cslab-ntua/oar3/releases/tag/3.0.0.dev10
https://github.com/cslab-ntua/oar3/releases/tag/3.0.0.dev10
https://github.com/cslab-ntua/regale-nixos-compose
https://github.com/cslab-ntua/regale-nixos-compose
https://github.com/cslab-ntua/regale-nixos-compose/releases/tag/1.1

D2.3 Final integration of sophisticated policies in the REGALE prototype

reason is the throughput of memory intensive applications is limited by the available

memory bandwidth, and thus increasing the compute resources does not contribute to the

speedup for them, which is known as the memory-wall problem. The third reason is the

compute resources inside a GPU are also becoming heterogeneous with different types of

units (e.g., matrix engines, regular FP64 units, integer units, etc.), and depending on their

usages, power can also be underutilised and wasted.

Problem Definition

Figure 8 illustrates our GPU co-scheduling and resource partitioning problem. We target W

GPU jobs waiting within the window (size: W) on a given queue and attempt to minimise the

total execution time of W different GPU jobs. Instead of executing them one by one, we

consider dividing them into several sets of jobs and co-locate each set on the same GPU(s) in

a space sharing manner while optimising the resource allocations to the co-located jobs.

Here, we assume the concurrency of co-scheduling (or the number of co-located jobs) on

each GPU is less than or equal to a given threshold (Cmax) and the requested numbers of

nodes/GPUs are the same for all jobs in a set, namely the same sized GPU jobs can be

co-scheduled. For each set of co-scheduling jobs, we optimise the resource partitioning state

on the allocated GPU(s), and to this end, we utilise several GPU partitioning features that

recent commercial high-end GPUs support (e.g. NVIDIA MIG, NVIDIA MPS, etc.). With the

MPS feature, one can partition/assign compute resources to co-located jobs at arbitrary rates

in a fine-grained manner, while with the MIG feature, one can completely isolate multiple

co-located jobs, resulting in coarse-grained but interference-free co-scheduling.

Figure 8: GPU co-scheduling and resource partitioning problem

Assumptions for a solution

Figure 9 demonstrates GPU throughput as a function of compute resource allocation to two

co-located HPC benchmark programs across different program mixes. For this evaluation we

REGALE - 956560 19 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

used our testbed system equipped with an NVIDIA A100 GPU with the MPS feature enabled.

The X-axis represents the ratios of compute resource allocation to the co-scheduled

programs shown at the legend, while the Y-axis indicates the relative throughput normalised

to that of a time-sharing scheduling, i.e., executing these two programs one by one without

sharing the resources but with fully allocating the entire GPU resources. As illustrated in the

figure, the optimal allocation of compute resources to the co-located programs depends

highly on the given programs and their characteristics (e.g. compute/memory intensity). As

we can observe in the third case, a balanced allocation achieves the best performance, while

for the others, a skewed allocation has advantage over a balanced one with a unique optimal

allocation point.

Figure 9: Co-scheduling Throughput as a Function of Compute Resource Allocations using MPS Partitioning

The left graph in Figure 10 presents the impact of memory bandwidth resource partitioning

while using two different options (shared or private) offered by the NVIDIA MIG feature. The

X-axis lists two different job mixes with two different compute resource allocation rates as

well as two different memory options (shared or partitioned), while the Y-axis shows the

relative throughput normalised to that of the time-sharing scheduling as mentioned above.

To assess the impact of memory partitioning on performance, we set up exactly the same

compute resource allocation for the shared and partitioned options. For these job mixes, we

observe considerable speedup by partitioning/isolating memory bandwidth resources by

mitigating the interference impact among the co-located programs. Therefore, depending on

the given job mix, it is preferable to partition/isolate the shared memory resources in order

to mitigate the interference impact. Finally, the right graph in Figure 10 compares multiple

different partitioning options. The vertical axis indicates the relative throughput normalised

to that of the time-sharing scheduling mentioned above. For this job mix, the MIG+MPS

hierarchical option works the best.

REGALE - 956560 20 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 10: Performance Benefit of Bandwidth Partitioning (Left) and Performance Comparison for Different

Partitioning Variants (Right)

Judging from the observations above, it is very important to choose the right combinations

of jobs to co-schedule. At the same time, it is essential to have sufficient variants of resource

partitioning and select the optimal one from them for a given set of co-scheduling jobs.

Solution Overview

Our approach requires (1) hardware support for enabling GPU partitioning; (2) software

interface to interact with the hardware partitioning configuration; (3) RJMS support for job

resource-wise scheduling; and (4) capability of RJMS node daemon to read/control the GPU

partitioning via an associated software interface. So far the following selections meet the

above requirements: NVIDIA Multi-Process Service (MPS) or NVIDIA Multi-Instance GPU

(MIG); NVIDIA Management Library (NVML); and Generic Resource (GRES) plugin in the

SLURM scheduler (partly supported). The default GRES plugin has several limitations to

control the GPU partitioning. For MIG, it can recognize the device files of MIG partitions at

the slurmd launch, however it does not control the MIG device setup nor reloads newly

added device files generated by creating new MIG partitions. For MPS, the default MPS

plugin does not offer per GPU / MIG partition MPS setting. Alternatively, we control

MIG/MPS settings via our prolog script to offer a functionality to control MIG/MPS

hierarchical partitioning as per request.

Figure 11 illustrates an overview of our approach that works over the GPU partitioning

functionality offered by the above software/hardware mechanisms. Our approach optimises

co-scheduling GPU job pair selections along with GPU partitioning configurations (MPS/MIG).

REGALE - 956560 21 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 11: Overall Architecture

An ML-based Sophistication in the Meta Scheduler

Figure 12 illustrates the entire system architecture of our solution. As shown in the figure,

the overall solution consists of three parts: (1) the offline profiling to collect application

profiles; (2) the offline training to set up the coefficients of our agent; and (3) the online

optimization to apply the trained agent to the decision making.

Figure 12: System Architecture of the Meta Scheduler

REGALE - 956560 22 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

For the application profiling, we collect hardware performance counters to characterise the

running jobs on the target system. The profiles need to be collected beforehand for any

co-scheduling targets in both the offline and online phases. In the offline training phase, we

collect the solo-run profiles for all the benchmark programs before the model training. In the

online optimization phase, if no profile is available for a queuing job, it is excluded from the

co-scheduling target and is executed exclusively using the entire GPU while collecting the

profile that shall be stored in the Job Profiles Repository. If the application is executed again

on the system, it is included in the co-scheduling target as the profile is available in the

repository. This procedure requires a matching function to select a corresponding profile for

each job based on its submission information (e.g., binary path, user ID, etc.). In the current

version, we simply consider using the application binary path plus name as a key and

checking if there is a profile associated with it in the repository. Note, developing an

advanced way to generate the key from the job submission information, while taking a

variety of aspects into account (e.g., input dependency), is an open problem for

profile-based approaches.

For the offline model training, we create variants of benchmark program mixes to co-locate

on the target GPU. For each program mix, we continuously examine the co-run throughput

while changing the partitioning setup. This partitioning search is based on reinforcement

learning, i.e., we update the partitioning and resource allocations accordingly when the next

co-run (with the exact same program mix) based on the reward function output that takes

the co-run throughput into account. During this procedure, the state-action table, which is

approximated by a neural network in this study, is trained, and the model coefficients in the

agent are eventually determined. The model coefficients are hardware specific and are not

portable to different hardware, however the training procedure is required only once for a

system though.

In the online phase, we deploy an optimization agent using the model generated in the

offline phase. The agent regards the optimization as a classification problem and uses the

model to choose sets of co-scheduling job mixes and corresponding resource allocations to

maximise the GPU throughput.

2.3 Elastic Resource Management

Motivation and Background

HPC systems are by design rigid in the way resource management takes place. This is because

in contrast with Cloud systems the HPC system managers consider executions with time

constraints which enables them to have optimal control of how the computing resources are

used, achieve higher system utilization, manage to serve higher demand of requests, provide

higher scalability and minimize system fragmentation. In more detail the HPC system

managers provide the ways to perform allocations of resources specifying both space and

time requirements. They allow users to demand particular computing resources (such as

REGALE - 956560 23 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

number of nodes, cores, amount of RAM per core, number of GPUs, etc) for a certain

amount of time. If the time limit for the job is not added and by default a small time limit is

given by the system.

Another aspect related to the rigidness of HPC is their inability to support evolving jobs,

which are those jobs that may need a dynamic scale-out (grow) or scale-in (shrink) of their

amount of allocated resources. The typical but inefficient practice to satisfy evolving jobs

with the traditional HPC resource managers is to allocate in advance the complete amount of

resources which will be used during the whole execution of the evolving job which may

mean that certain resources will be allocated but not utilized.

Evolving jobs were not the typical example of HPC jobs but with the increasing needs of Big

Data and AI workloads to leverage HPC instruments we want to bring more elasticity in HPC

in order to enable the efficient execution of these types of jobs and allow them to leverage

the computing capabilities of HPC.

The time-constrained, non-dynamic mode of scheduling which fits very well to the High

Performance Computing characteristics of these systems is not adapted for Big Data jobs

which are more elastic by nature. In typical Big Data frameworks such as Spark and Flink the

jobs are launched as Cloud services without time limits and have the ability to scale-out/in

rapidly whenever they need.

In this task we want to bring more elasticity in HPC but without altering its resource

manager’s internal aspects or losing in scheduling efficiency. We are convinced that each

scheduling mode (HPC and Big Data) have their own advantages and disadvantages and they

fit better to serve the needs of their typical use cases hence we do not want to change

internals of any of them. For that, we study and extend techniques that enable the HPC and

Big Data resource and job management systems to collocate with minimal interference on

the HPC side but with acceptable and high guarantees for the Big Data jobs executions.

Towards Elasticity in HPC for Big Data jobs

HPC and Big Data resource and job management systems are complex pieces of software,

and their interaction is not an easy task. In our case we are interested in the interoperability

of Slurm and OAR HPC resource managers with Kubernetes as a Big Data resource manager.

Big Data workloads that make use of ML frameworks such as PyTorch, Tensorflow or Horovod

do not use a Big Data resource manager within their runtime and hence it is easier to allow

an HPC resource manager to schedule these workloads and deploy them with singularity

containers. However, in the case of Spark applications things are more complex. While the

standalone mode can allow the simple static execution of jobs, which can easily be executed

by Slurm and Singularity; In the cluster mode an external resource manager gives more

intelligence and elasticity in the executions. In our case, Kubernetes can play the role of

resource manager for Spark framework based on already existing developments12 done by

the community. However, these Spark workloads will need to collocate with other HPC

12 Spark - Kubernetes integration: https://spark.apache.org/docs/latest/running-on-kubernetes.html

REGALE - 956560 24 12.04.2024

https://spark.apache.org/docs/latest/running-on-kubernetes.html

D2.3 Final integration of sophisticated policies in the REGALE prototype

workloads on the HPC side, which is managed by another resource manager, Slurm or OAR.

The simplest way is to give precedence to one workload over another. HPC jobs have tighter

resource requirements, while the Big Data applications are designed to manage resource

dynamicity. It is possible to combine the characteristics of each type of workload and achieve

optimal behavior for both types of workloads by leveraging: the prolog/epilog mechanism

that most of the HPC resource managers offer, along with the capacity of the Big Data

resource manager to handle a dynamic number of nodes.

The work in this section makes use of the developments to support Kubernetes for Spark and

combines it with previous works13 upon collocation of Big Data and HPC jobs through the

technique of prolog/epilog scripts. This software tool, named BeBiDa, is based on executing

Spark applications upon unutilized resources by the HPC resource manager and whenever

normal HPC jobs need the resources then Spark instances are removed, and they are

restarted elsewhere when there is availability. In these previous works the developments and

experiments have been done using Spark jobs with YARN resource manager on the Big Data

side along with OAR resource manager on HPC side. In the context of REGALE, we have

adapted the technique for Kubernetes on the Big Data side, Slurm and OAR on the HPC side

and we have provided the support of the Singularity containerization platform in order to

enable flexible environment deployment on HPC clusters.

Initially, in the context of REGALE, the BeBiDa technique has been enhanced for Kubernetes

and Singularity, using only Singularity-CRI and Slurm resource manager. The initial version of

the prototype implementation can be found here:

https://github.com/RyaxTech/bigdata-hpc-collocation

This final version of the prototype implementation has enabled the tight integration of

Kubernetes along with the support of both SLURM and OAR resource managers. The code of

final version of BeBiDa for Kubernetes, Slurm, OAR and Spark can be found here:

https://github.com/oar-team/regale-nixos-compose/tree/main/bebida

The integration of BeBiDa with Kubernetes goes a step further in enabling an elastic resource

management for HPC systems, since it allows to bring Spark environment, or other Big Data

related environments, on HPC systems.

In our setting we consider that there will be an HPC cluster managed by SLURM and a small

Big Data cluster managed by Kubernetes. Big Data jobs launched on the Kubernetes side may

have the ability to make use of the HPC cluster in best-effort mode. On the Big Data side we

could just have 1 or 2 nodes with Kubernetes executors in order to host the Spark driver jobs.

In case of total usage of resources on the HPC side the Big Data cluster resources could serve

some minimum requirements for Spark jobs.

To better understand the resource sharing mechanism let us take a simple example of one

HPC cluster shared between two applications: an MPI job and a Spark application. In this

13 Michael Mercier, David Glesser, Yiannis Georgiou, Olivier Richard. Big data and HPC collocation: Using HPC idle resources
for Big Data analytics. BigData 2017: 347-352

REGALE - 956560 25 12.04.2024

https://github.com/RyaxTech/bigdata-hpc-collocation
https://github.com/oar-team/regale-nixos-compose/tree/main/bebida

D2.3 Final integration of sophisticated policies in the REGALE prototype

configuration, the Spark application is submitted to the Big Data resource manager, this

application can take advantage of all the available resources of the Big Data cluster and the

unutilized resources on the HPC cluster. When an MPI application is submitted to the HPC

cluster, the resources previously used by the Spark application are removed from it and

allocated to the MPI one. The Spark built-in resilience mechanism will handle this resource

loss and split the work between the remaining resources. When the HPC jobs finishes, the

freed resources will be allocated again to the Kubernetes cluster and the Spark application

might use them again.

The advantage of this solution is that it is simple to implement – only based on configuration

and integration – but still gives the flexibility to have HPC resources available for data

analytics applications. As a comparison, in a classical setup of two clusters (HPC and Big

Data), it is possible for a Spark application to run in stand-alone mode inside an HPC job, but

then it cannot leverage resources from both Big Data and HPC clusters. Whereas if it is

scheduled through Kubernetes, it can make use of both clusters dynamically and both HPC

and Big Data workloads can co-exist efficiently, leveraging both clusters without keeping

resources unutilized while others may be fragmented. This technique can be used in the

context of Spark for batch executions, but can be also used, with minor changes, in the

context of Streaming such as Spark Streaming [3] or Flink.

The main drawback of the solution is that it needs the installation of Kubernetes Node

components on the HPC nodes participating in the Kubernetes cluster to be leveraged for Big

Data jobs executions. Besides the installation of some additional software the main issue is

the security concerns brought by the container runtime interfaces used by Kubernetes.

However, this is continuously being improved by the community and since the beginning of

REGALE project we have now effective and secure ways to deploy Kubernetes node

components as a non-root user14 helping to remove the security concerns.

Configuration and automation of BeBiDa tool for elastic executions on HPC

We hereby show some basic configuration steps, provided to enable the features to take

place. The resource sharing between the HPC and the BD clusters is implemented by

attaching the idle resources of the HPC cluster to the Kubernetes cluster. This mechanism is

implemented using the HPC resource manager prolog and epilog scripts. Each HPC worker

node is a Kubernetes worker which is decommissioned if an HPC job requires the node and

re-attached to the pool of Kubernetes workers when the job finishes.

The following terminal details show the contents of the OAR prolog and epilog scripts.
Similar scripts are used in the case of SLURM. The prolog script features the drain of the
Kubernetes node and its removal from Kubernetes cluster available resources in order to be
used by OAR HPC jobs. We can also see the definition of “BEBIDA_NOOP” job-name which,
as we will see in the next section, is used for the optimization techniques.

#!/bin/bash

14 https://kubernetes.io/docs/tasks/administer-cluster/kubelet-in-userns/

REGALE - 956560 26 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

export OAR_JOB_ID=$1

export PATH=$PATH:/run/current-system/sw/bin:/run/wrappers/bin

(

echo Enter BEBIDA prolog

printenv

id

if ["$OAR_JOB_NAME" = "BEBIDA_NOOP"]

then

echo BEBIDA_NOOP is set. Do not stop the kubernetes agent

exit 0

fi

for node in $(oarstat -J -j "$OAR_JOB_ID" -p | jq
".[\"$OAR_JOB_ID\"][] | .network_address" -r)

do

echo == Removing node $node

oardodo kubectl --kubeconfig /etc/rancher/k3s/k3s.yaml drain
--force --grace-period=5 --ignore-daemonsets --delete-emptydir-data
--timeout=15s $node

echo == Removed node $node

done

) > /tmp/oar-${OAR_JOB_ID}-prolog-logs 2>
/tmp/oar-${OAR_JOB_ID}-prolog-logs

The epilog script features the uncordon of the Kubernetes node and its to the Kubernetes
cluster available resources for Big Data jobs executions.

#!/bin/bash

export OAR_JOB_ID=$1

export PATH=$PATH:/run/current-system/sw/bin:/run/wrappers/bin

(

echo BEBIDA epilog

printenv

id

for node in $(oarstat -J -j "$OAR_JOB_ID" -p | jq
".[\"$OAR_JOB_ID\"][] | .network_address" -r)

REGALE - 956560 27 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

do

echo == Adding node $node

oardodo kubectl --kubeconfig /etc/rancher/k3s/k3s.yaml uncordon
$node

echo == Added node $node

done

) > /tmp/oar-${OAR_JOB_ID}-epilog-logs 2>
/tmp/oar-${OAR_JOB_ID}-epilog-logs

Once these scripts are set in the OAR configuration of each HPC compute node to be added

in the HPC-Big Data collocation pool of nodes, and the right changes are made in the OAR

configuration files; the addition and removal of HPC nodes in the Kubernetes cluster will be

done automatically.

Finally, Spark needs to be configured in order to have Kubernetes defined as its cluster
manager. The main configuration change is the creation of a serviceAccount within
Kubernetes which will grant kubernetes access required to Spark to spawn the workers
across the desired Kubernetes nodes on the HPC side.

apiVersion: v1

kind: ServiceAccount

metadata:

name: spark

namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

namespace: default

name: spark-role

rules:

- apiGroups: [""]

resources: ["configmaps"]

verbs: ["*"]

- apiGroups: [""]

resources: ["pods"]

verbs: ["*"]

- apiGroups: [""]

resources: ["services"]

verbs: ["*"]

REGALE - 956560 28 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: spark-role-binding

namespace: default

subjects:

- kind: ServiceAccount

name: spark

namespace: ryaxns-execs

roleRef:

kind: Role

name: spark-role

apiGroup: rbac.authorization.k8s.io

By doing that we give the ability to Kubernetes to perform the scheduling decisions for Spark
instead of Spark standalone scheduler, hence taking advantage of the power of Kubernetes
scheduling algorithms.

Experimenting the elastic execution of Big Data jobs upon HPC resources

Once the environment is configured, we can launch a Spark job to be deployed on HPC

clusters leveraging on the dynamic nature of Spark jobs without interfering with the rigid

HPC executions.

We provide here a simple example of experimenting with the BeBiDa system management

tool to enable the elastic execution of Spark jobs on HPC resources. Once the environment is

ready we will see that Spark will launch the driver which will be deployed on the Kubernetes

side and then depending on the availability of Kubernetes workers it will deploy the Spark

executors. Figure 13 provides a high-level view of how this deployment will take place among

the available resources of Big Data and HPC clusters. In the figure we can see an execution

with 3 executors where 1 lies on the Big Data cluster while the other 2 executors lie on the

HPC cluster.

Now once the Spark job is deployed and we can see how the HPC nodes are used for its

execution, we can then deploy an HPC job on the HPC side selecting the compute node 1 and

observe how the Spark executor 2 running on the HPC cluster will be killed since the

Kubernetes worker 4 will be stopped there so that the HPC job which has higher priority can

be executed without interference. Nevertheless, the Spark job will deploy the Spark executor

2 and resume execution (without needing to restart from the beginning) on other available

nodes and in particular it will try to use the HPC compute node 3 if it is not used by an HPC

job. This will allow both the higher priority rigid HPC Slurm job and the dynamic Spark one to

be run successfully.

REGALE - 956560 29 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 13: The high-level view of a Spark job execution on HPC resources elastically through BeBiDa

In our procedure, we have made use of NixOS-Compose tool15 to provide a reproducible

methodology to seamlessly prepare the environment on a PC, using VMs, and on Grid5000,

using baremetal machines. The procedure is detailed here

https://github.com/oar-team/regale-nixos-compose/tree/main/bebida but we provide an

example right beneath for a VM based experimentation.

We can either deploy BeBiDa environment with OAR or SLURM resource manager.

$cd regale-nixos-compose/bebida

Build the environment with OAR

$nxc build -C oar::vm

OR use the following for SLURM nxc build -C slurm::vm

export MEM=2048

nxc start

We can wait for the VM to start, and then in another terminal (in the same directory), you

can connect to the frontend with:

$nxc connect frontend

We can check that OAR has two nodes alive with oarnodes:

[user@frontend:~]# oarnodes -s

node1:

1: Alive

node2:

2: Alive

15 https://github.com/oar-team/nixos-compose

REGALE - 956560 30 12.04.2024

https://github.com/oar-team/regale-nixos-compose/tree/main/bebida

D2.3 Final integration of sophisticated policies in the REGALE prototype

We can then connect to the server to check that Kubernetes is also seeing the nodes as

Ready:

$nxc connect server

[user@server:~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

server Ready control-plane,master 2m48s v1.23.6+k3s1

node2 Ready <none> 2m36s v1.23.6+k3s1

node1 Ready <none> 2m36s v1.23.6+k3s1

Now we can use OAR and Kubernetes with Bebida enabled. On the server we can watch the

Kubernetes nodes state with kubectl get nodes -w, where we can see:

[user@server:~]# kubectl get nodes -w

NAME STATUS ROLES AGE VERSION

server Ready control-plane,master 7m35s v1.23.6+k3s1

node2 Ready <none> 7m23s v1.23.6+k3s1

node1 Ready <none> 7m23s v1.23.6+k3s1

Then we can deploy a simple Spark job execution based on the Spark-pi example

here:https://github.com/oar-team/regale-nixos-compose/blob/main/bebida/scripts/spark-pi

.yaml

[user@server:~]# kubectl apply -f scripts/spark-pi.yaml

We can then observe how the Spark executors are deployed across the available Kubernetes

resources on either the Big Data or the HPC cluster (through BeBiDa tool)

While this Spark job is running we can go on the frontend node and we can create a simple

OAR job

[user@frontend:~]# oarsub -l nodes=1 hostname

INFO: Moldable instance: 1 Estimated nb resources: 1
Walltime: 3600

REGALE - 956560 31 12.04.2024

https://github.com/oar-team/regale-nixos-compose/blob/main/bebida/scripts/spark-pi.yaml
https://github.com/oar-team/regale-nixos-compose/blob/main/bebida/scripts/spark-pi.yaml

D2.3 Final integration of sophisticated policies in the REGALE prototype

OAR_JOB_ID=2

We will then observe in the server terminal that the node allocated to the OAR job becomes

unavailable for the Kubernetes workload (SchedulingDisabled), during the OAR job execution

and then after some seconds it comes back in a Ready state:

node1 Ready,SchedulingDisabled <none> 8m11s
v1.23.6+k3s1

node1 Ready,SchedulingDisabled <none> 8m11s
v1.23.6+k3s1

node1 Ready <none> 8m15s
v1.23.6+k3s1

In the meantime we can obslerve that the Spark executor which was running on the

particular node has been removed, since the node was no longer part of the Kubernetes

nodes, and it has been placed upon a different available node.

An important aspect that needs to be improved is the execution guarantees we can give on

the Big Data jobs when executed elastically on the HPC side through BeBiDa. The current

problem is that since HPC jobs have priority and Big Data jobs are always launched on the

unutilized resources of the HPC system, it is possible that we do not manage to finalize Big

Data jobs in a timely manner. This means that we cannot easily use this technique for

real-time Big Data streaming cases. Optimizations are needed to the BeBiDa technique in

order to address this issue. This is the subject of the following section.

Improving Big Data jobs turnaround time through new BeBiDa optimization techniques

The BeBiDa system management tool will enable the effective execution of Big Data jobs

upon HPC resources with no interference of typical HPC jobs. This functionality comes with

the drawback that in case there is a nearly 100% utilization of the system through the typical

HPC workloads then the Big Data jobs will suffer from high turnaround times. To improve this

we proposed optimization techniques which make use of simple mechanisms that allow the

system to go through the typical HPC usage to get resources which will be used by the Big

Data side elastically.

We have implemented the improved BeBiDa guarantees in a way that Big Data jobs can

respect deadlines and serve time-critical applications..

A) Deadline-aware

REGALE - 956560 32 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

In this technique we create empty jobs which do not trigger the prolog/epilog scripts to

leave room for Big Data applications to be executed in the space of HPC jobs. The idea is to

prepare holes on the HPC schedule plan to guarantee a fixed pool of resources for the Big

Data workload.

For that we have set-up a Big Data queue of jobs and when the job queue grows above a

certain threshold we submit some HPC jobs with the particular name of BEBIDA_NOOP.

which as we also mentioned during the configuration of BeBiDa in the previous section does

not remove the Kubernetes node from the available resources hence removing the

possibility for HPC jobs to kill the Big Data job which is running on that resource.

For this implementation we have created a new service named “BeBiDa Shaker”, hosted on

Kubernetes, which has access to the pods list and status. This service looks at new submitted

applications and gets the deadline and resource needs using Kubernetes annotations. In

particular for Spark applications, these needs are provided as parameters of the Spark driver

which demands resources for the spawned Spark executors. Using annotations, the service

tries to reserve resources for the application in a way to be sure that it will finish before its

deadline. This is done by submitting a HPC job -hence higher priority than the typical Big

Data jobs- with prolog and epilog scripts deactivated which will leave the resources for the

Big Data workload. In SLURM this has been implemented using the “–begin” parameter. For

OAR the advanced reservations functionality has been used to cover this need. This service

provides a simple interface to retrieve the following details for each application, its deadline,

its estimated resource usage, the associated HPC jobs and the estimated completion time.

Figure 14 shows a high-level view of the technique and how the different internal processes

are related. In the exceptional case where the deadline cannot be fulfilled an alert is

automatically sent to the user by email.

B) Time-critical

In this technique we make use a dynamic set of resources to serve applications immediately

and scale them out and in (grow and shrink) when necessary, inspired by the work of Liu et

al16.

The technique makes use of the same core mechanisms implemented for Deadline-aware:

the “BeBiDa Shaker” service which tracks the submitted Big Data applications on Kubernetes

side and if a particular application is labeled as “Time-Critical” then particular resources are

taken out of the HPC pool to serve directly the urgent “Time-Critical” demand coming from

the Big Data applications. Furthermore this demand can evolve dynamically based on the Big

Data application needs.

16 Feng Liu, Kate Keahey, Pierre Riteau, Jon B. Weissman. Dynamically negotiating capacity between on-demand and batch
clusters. SC 2018: 38:1-38:11

REGALE - 956560 33 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The implementation of this feature made use of the specific feature of OAR named quotas17

which allows the administrator to limit the amount of resources used by users or the whole

system. In our case we configure it for the whole system. This means that the particular

resources will be removed from the typical pool of HPC resources for HPC jobs and will

become available as Kubernetes resources to be allocated by the urgent “time-critical” Big

Data jobs. The following procedure gives the different steps taking place to address the

needs of both “deadline-aware” and “time-critical” techniques of managing elastic Big Data

jobs on HPC infrastructures

1. A user may submit an elastic Big Data (HPDA) application using Kubernetes.

2. The New Bebida optimization service watches the HPDA submission

○ If the job is a deadline aware job then execute it with Slurm or OAR jobs (no

prolog/epilog) setting the right walltime.

○ If it is a time critical job run it directly on the HPDA reservation

3. The New BeBiDa optimization service will regularly increase or decrease the

on-demand machine pool through Slurm or OAR allocation, reservations or quota

4. The New BeBiDa optimization service will also watch HPDA application status: if the

job finishes before its deadline delete the associated deadline aware job.

The following Figure 14 sketches the design of executing jobs using the new BeBiDa

deadline-aware and time-critical techniques.

Figure 14: High-level view of the deadline-aware and time-critical BeBiDa mechanisms

17 https://oar-3.readthedocs.io/en/latest/user/mechanisms.html?highlight=quota#quotas

REGALE - 956560 34 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The code of the New BeBiDa sophistications is provided as open-source software in this

github repository18. The experimentation and evaluation of the new BeBiDa optimization

techniques are provided in the evaluation deliverable D1.4.

Conclusions and Perspectives

This section presented the contributions made upon BeBiDa software to be used effectively

in the context of REGALE. Furthermore we have proposed new optimization techniques to

improve the turnarnound times of Big Data jobs and introduced ways to bring elasticity in

the ways to control the traditionally rigid mechanisms of HPC resources management. This

goes through combining the power of the traditional HPC resource managers OAR and

SLURM with the more elastic Cloud resource manager Kubernetes. The proposed techniques

demand the administrator configuration and privileges but there are already ways to install

Kubernetes in the user-space minimizing the security risks.

In terms of perspectives we believe that more fine-grained integration and direct

communication between the HPC resource managers and Kubernetes will allow the solution

to reach higher levels of efficiency, performance and scalability.

2.4 Data-aware resource allocation

Motivation

Current resource allocation strategies as deployed on supercomputers focus on fulfilling user

requirements regarding compute and memory needs, globally optimizing machine usage and

user response time. But as applications evolve towards more complex codes, the applications

:

1. become more data intensive either because larger applications produce more data or

applications need to read and process more data (large scale neural network training

for instance)

2. are now built by assembling different codes into complex workflows where

components exchange data, each component having different needs regarding

resources and the different components need to be scheduled within a given order

imposed by dependencies.

These evolutions are increasing the pressure on the shared components of the

supercomputer (I/O, network), users experiencing more and more often performance impact

(interference) due to the concurrent execution of other applications. The machine

capabilities are also not evolving into a direction that would soften these issues. For instance,

in 10 years the compute power made a leap by a 134× factor, from 1.5 PFlop/s peak on

Roadrunner (TOP500 #1 in 2008) to 201 PFlop/s peak on Summit (#1 in 2018), the I/O

throughput for the same machines only increased by a 12× factor, from 204 GB/s to 2,500

18 https://github.com/RyaxTech/bebida-optimization-service/tree/main

REGALE - 956560 35 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

GB/s. To prevent this I/O bandwidth shortage to have a catastrophic performance impact on

applications, solutions are emerging like adding persistent storage capabilities on each node

or group of nodes using SSDs or NVRAM. But they make the architecture more complex,

impacting the different software components as well from the system up to the applications.

Today’s system managers are missing capabilities to control a fair sharing of these I/O and

bandwidth resources, impacting application execution, overall machine performance and

leading users to find workarounds to compensate for the weakness of the underlying

software components.

Assumptions for a solution

Extending resource allocation algorithms to become data-aware requires both to have a

better and more complete model of the machine architecture, and to have more information

about the application resource needs and execution behavior. Often, user-provided

information is limited to compute and memory needs, and a very approximate expected run

time. A solution will require to address these different issues:

1. Better model of the machine, integrating networking and storage capabilities;

2. Richer information about application resource needs and consumption. Two

options that can be mixed: i) providing the user with a language to describe

the application profile/needs; ii) compute an application profile without user

input relying on machine learning techniques.

3. Resource allocation algorithms capable of leveraging these data to better fulfil

the application needs, reduce the interferences on shared resources, and so

ensure low execution times as well as high machine usage.

An important identified issue is the capacity to study harmful resource interferences due to

excessive activities (I/O, network, computing) observed on real infrastructures. In particular,

we need to be able to reproduce them realistically in simulation in order to be able to replay

scenarios with different interferences so that we can fairly compare the different solutions.

This raises the question to define and build good models (jobs, I/O, file systems, etc.) and

workloads. This is challenging because the interactions we have to take into account

between types of resource and systems are numerous and reveal complex behaviors. To

tackle this, we consider a coarse-grain modelization in resource usage and time to cope with

the trade-offs between complexity and accuracy. Empirical studies imply a lot of evaluations

and experiments of distributed systems. As an important by-product we are concerned by

reproducibility issues and we are investigating methodologies to offer strong guarantees.

Methods and Algorithms

REGALE - 956560 36 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 15: Melissa architecture

The first step to tackle these complex data movement interference problems was the

development of a new simulation framework named Batsim. As large scale computation

systems are growing to exascale, system managers need to evolve to manage this scale

modification. Batsim is an extendable, language-independent and scalable system manager

simulator. It allows researchers and engineers to test and compare any scheduling algorithm,

using a simple event-based communication interface, which allows different levels of realism.

We have demonstrated that Batsim’s behavior matches the one of the real system manager

OAR.19

As a use-case we will rely on the ensemble run workflow Melissa and associated Pilots.

Melissa (Figure 15) executes several instances of the same simulation with different input

parameters (the members of the ensemble). These members produce data that is directly

sent to a Parallel Data Processing Server which aggregates and incrementally processes the

data received.

Melissa relies on a flexible architecture where each member and the server are different

executables that connect dynamically. Melissa is fault-tolerant and elastic (resources can be

added/removed on-the-fly). Thus, Melissa offers an advanced scenario of workflow

application with I/Os, multiple jobs, communication intensive, and various degrees of

flexibility that make it a good choice for testing data aware resource allocation strategies.

The regularity and predictability of the workflow jobs can hopefully be leveraged to avoid I/O

bottlenecks. This ideal placement and execution of workflow jobs can only result in a close

interaction between the system manager (who allocates resources), the job manager (who

monitors execution and communications) and the workflow engine which produces the jobs

and synthesizes the results of the ensemble run. There are needs to enable more

19 Dutot, P.F., Mercier, M., Poquet, M., Richard, O.: Batsim: A realistic language-independent resources and jobs
management systems simulator. In: Desai, N., Cirne, W. (eds.) Job Scheduling Strategies for Parallel Processing.
pp. 178–197. Springer International Publishing, Cham (2017)

REGALE - 956560 37 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

interactions between the system manager with the global view of the system, and workflow

manager with the global view of the workflow application, to optimize the mapping of

applications and minimize the data movement between workflow components.

The Melissa Launcher interacts with the system manager (OAR or SLURM in the REGALE

project) to submit as many jobs as necessary for the parameter sweep of the ensemble run.

Even without considering communication, when using simple naïve queue management

algorithms there can be important interferences with the other users on the cluster. For

example if a single job of the ensemble run fails, it will be resubmitted and could delay the

result of the whole ensemble run by being executed much later. Similarly, the Launcher and

the Parallel Data Processing Server components of Melissa only need to use resources when

a non-trivial amount of resources are dedicated to workers executing simulation runs.

Even though each simulation run can be associated to a single job in the batch scheduler, this

often leads to performance degradation at the system manager level. Clustering jobs and

allocating resources in sets reduces the number of calls to the system manager, at the price

of having to schedule the jobs through Melissa on the resources provided by the system

manager. We will extend this approach by studying the interactions between the system

manager scheduler and the workflow manager scheduler.

In another approach, we are exploring a control-based approach (feedback loop) to prevent

I/O congestion on shared file systems in HPC platforms due to bag-of-task workloads.

Integration in the REGALE architecture

Melissa and the OAR system manager are already used jointly on several production systems.

The main difficulty for this approach is to define precisely the possible interactions, firstly

between the job manager which will report job metrics and the system manager, and

secondly between the system manager and the workflow manager.

A first approach is to provide to the workflow manager information on the system manager’s

provisional schedule, to anticipate resource requirements and jobs running times for

upcoming simulation runs. For example, when the scientific workflow in execution is about

to have a large pool of tasks to process (when one or several of the tasks currently in

execution will spawn many tasks requiring a large amount of additional resources), providing

the resource manager wait time estimates for any job with specific resource requirements

can help the workflow manager to anticipate when to ask for resources and how many

resources to ask for. Depending on admission rules, queue structure and the general

concurrent workload, some job sizes can have much shorter waiting time as they will be

easily backfilled in the current provisional schedule.

A second approach is to provide information to the system manager from the workflow

manager, for example giving more information on tasks. In our case, there are tasks which

can be cheaply stopped and restarted like clients and essential tasks which should not be

interrupted like the server. In addition, although the server can be executed on simple

REGALE - 956560 38 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

resources (e.g. cores for sensitivity analysis), it can also require specific devices (e.g. GPUs for

deep learning). Without communication between workflow manager and system manager,

there could be situations where resources for clients are assigned to the scientific workflow

without the necessary resources to run the aggregation server, or conversely resources to

run the server without enough clients running to avoid idleness. In this regard, specific

submission requests formulated by Melissa and addressed to the system manager make it

possible to initiate the execution of the server and a few clients only once a specific set of

predefined resources becomes available.

Since the sophistication of Melissa was part of this task's objectives, emphasis was placed

onto adding new features to Melissa's launcher in order to improve its relation with OAR.

The second approach was hence investigated with the strategy described in the next section.

Implementation strategy

The strategy presented herein leverages both Melissa and OAR functionalities like elasticity

and fault-tolerance for the former, and job container20 as well as best-effort21 jobs for the

latter. Thus, the second approaches discussed in the previous section was tackled with the

following integration scheme:

1. A job container is allocated for the server and a few clients.

2. Complementary clients are submitted on the best-effort queue outside of the

container.

3. The study is stopped as soon as the targeted number of clients is executed or when a

convergence criteria is met.

Such implementation is illustrated on Figure 16 and details are discussed hereafter.

21 http://oar.imag.fr/docs/latest/user/usecases.html

20 https://oar.imag.fr/wiki:job_types

REGALE - 956560 39 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 16: Melissa/OAR scheduling strategy

First, Melissa’s launcher is executed on the frontend node with a command of the form :

python3 -m melissa.launcher vvv --output-dir=/path/to/dir

scheduler=oar_hybrid\

--oar-hybrid-parameters=<client_freq>\

--oar-hybrid-parameters=<size_factor>\

--num-server-processes=<server processes>\

--scheduler-arg-server=<server option>\

--num-client-processes=<client processes>\

--scheduler-arg-server=<client option>\

path/to/server.sh

which selects the newly developed allocation strategy and specifies various resource related

options.

From these options, the launcher does the following:

1. The container’s resources parameter is inferred by combining the server’s resources

with the clients’ multiplied by the size_factor parameter.

2. The container’s walltime is computed from the largest specified walltime plus an

extra minute.

3. A dummy walltime consistent sleeping shell script is written to the working directory.

4. A request for the container is finally made with the following core command:

oarsub -t container -t <types> -p <properties> -l <resources>
./dummy_script

Once the container’s request has been submitted, its job id is read from the standard output.

REGALE - 956560 40 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The launcher then submits the server’s job inside the container with the command below:

oarsub -t inner=<job id> -t <types> -p <properties> -l <server
resources> oarsub.<server id>.sh

Then, as soon as the server has processed the user’s configuration file defining the study’s

size and parameters, it will connect to the launcher and ask it to submit as many clients as

specified. In this context however, the launcher will switch between the container’s and the

best-effort queues.

Note that the best-effort queue is requested with the option below:

oarsub -t besteffort -t <types> -p <properties> -l <client
resources> oarsub.<client id>.sh

The client_freq parameter regulates the frequency of jobs submitted and is equivalent to k+1

with Figure 16 notations.

With such an allocation paradigm, specific care must be taken to make sure that the

container’s job complies with Melissa’s fault-tolerance logic. This means that the container’s

job state must be monitored so that appropriate measures can be taken in response to

abnormal behaviour (e.g. an unexpected interruption).

In addition, complementary features were implemented to enhance this strategy’s

robustness and benefits. Indeed, although the main point of best-effort jobs is that they are

likely to start quickly if resources are available anywhere, such jobs can also be arbitrarily

cancelled. Thus, despite the fault-tolerance protocol which automatically resubmits such

jobs, since Melissa is mostly concerned with numerical solvers, checkpointing is not

necessarily an option. As a consequence, every time a job is restarted, it must start over from

zero. In this regard, it is totally plausible that some jobs never finish as in case of container or

server walltime exceeding for instance. For the DeepLearning version of Melissa, missing

timesteps can jeopardise the batch construction ultimately resulting in a failure. A way to

reduce the likelihood of this issue is to make sure that any best-effort cancelled job is

resubmitted inside the container if there is room in it. The strategy can be illustrated as

follows:

1. During the initial clients launching phase, the submission queue depends on whether

the number of submitted clients is a multiple of the client_frequency parameter or

not.

2. Failed clients are detected after the first round of submission and are resubmitted,

either in the container if there are available resources or otherwise in the best-effort

queue.

The proposed strategy offers several advantages. First, the job container ensures a constant

stream of data to the server which will in turn avoid any susceptible idle state. Then, as

highlighted earlier in the discussion, the procedure relies on a minimal set of

extra-parameters related to the size of the container and the proportion of jobs submitted in

REGALE - 956560 41 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

the best-effort queue. Depending on the cluster’s occupancy, this strategy could significantly

reduce the computation time and optimize the cluster’s throughput. Finally in the worst case

scenario, all clients would be run inside the container which would be equivalent to Melissa’s

standard functioning.

Development steps

In an effort to harmonize the different Melissa flavors, a significant amount of work was put

into building a generic launcher compatible with the entire Melissa suite. The full description

of the modifications made to the launcher in order to achieve this would however be overly

technical for the present report. The reader is then invited to directly go through the

documented code22 to learn more about this aspect. In the following we will only focus on

the scheduling management policy.

From a general perspective, schedulers can be divided into two main categories: direct and

indirect schedulers. Examples of such schedulers are given in Table 3 below.

Table 3: direct/indirect scheduling examples

Schedulers Kind Submission command
Job monitoring
command

SLURM indirect sbatch some-script.sh
sacct
--job=<job-id>

OAR indirect
oarsub --scanscript
some-script.sh

oarstat -j
<job-id>

OpenMPI direct
mpirun -np ntasks --some-options
some-executable

It may be noted that in case of direct scheduling, there is no specific command to monitor

the job state. In Melissa, Python subprocesses are used to process the submission command

and the associated poll function can then be used to monitor its state from each process’

returncode.

It can also be noted that both SLURM and OAR can be turned into direct schedulers when

jobs are submitted interactively respectively with srun and mpirun inside an allocation.

Thus, Melissa’s launcher gives the possibility to work with all kinds of schedulers by defining

a specific scheduler object coming with its own set of methods to submit, monitor and cancel

jobs. In the frame of the REGALE project and WP2, the focus is mostly given to OAR which

22 Melissa’s new launcher has not been made publicly available yet but access can be granted upon demand at
https://gitlab.inria.fr/melissa.

REGALE - 956560 42 12.04.2024

https://gitlab.inria.fr/melissa

D2.3 Final integration of sophisticated policies in the REGALE prototype

was already supported in an indirect fashion. The object of our work towards sophistication

was then to extend this module in an alternative version denoted oar_hybrid comprising new

options related to the container/best-effort job submission. In doing so, specific treatment

was needed for instance to:

- Infer the container’s dimensions and adapt all submission commands (container,

inner, besteffort).

- Keep track of the queue each job was submitted to.

- Reassign the best-effort jobs into the container depending on its availability and on

the job statuses.

- Monitor the container’s job state.

Testing process

Although definite conclusions regarding this strategy can theoretically only be drawn through

the use of rigorous platform simulators, this sophistication task constitutes a proof of

concept whose feasibility can be assessed with basic testing. In this logic, grid5000 platform23

and OAR version 2.5.10 were chosen to validate our implementation. Even though these

tests are preliminary, we still chose to run them on a real cluster in Nancy. The queue used is

not as filled as it would be on a real production cluster but still allows us to test submitting

workflows with some concurrent workloads and some reservations.

In addition, since the DeepLearning version of Melissa was recently updated to work with the

new launcher, it was the considered Melissa flavor for this experiment. The specificity of this

version is that the DeepLearning framework relies on GPU computing for the server and Core

usage for the clients while the other Melissa flavors (i.e. Melissa-SA and Melissa-DA) only

have use cases involving Core resources.

Regarding the clients, the 2D heat-equation problem solved with finite differences on a

cartesian grid is extremely flexible since it can be tuned to match any level of computational

cost either by extending the grid size or by extending the simulation’s duration. A C based

heat PDE solver was then selected as our demonstration use case with the following

parameters:

- grid size of 32 400 elements (180 x 180),

- a total of 6000 time steps and 100 messages sending per simulation,

- average execution time around 54 - 70 seconds,

- each client was executed on a single core.

This last point is paramount since experiments involving clients with execution time smaller

than a minute are likely to be tainted by OAR’s side effects. Finally, all runs were

dimensionalized according to grid5000’s policy and studies of 30 clients were performed. The

plan of experiment used to evaluate this implementation is summarized in Table 4. In the

23 https://www.grid5000.fr/w/Grid5000:Home

REGALE - 956560 43 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

second column are listed the Hybrid parameters as a couple of numbers (x,y). In this notation

x is the “client frequency”, that is how often a client job is submitted to the best effort

queue. In the extreme case the values are ‘1’ (all client jobs are submitted as best effort), or

‘31’ (all 30 jobs are executed locally with the server). The second parameter y is the

size_factor, that is the number of resources dedicated to client jobs added to the server

requirements in the server container. The last column in this table also gives the preliminary

results for the server execution time. Note that these values are extremely skewed by the

scarcity of concurrent workload on the test platform. Indeed, in the control experiment (-,-),

all the client jobs are submitted individually and scheduled immediately along the server. In

comparison, the other (x,y) experiments all suffered from the additional cost of executing

more than one client job on each resource of the server container.

Table 4: computational plan of experiment

Experiment
Id

Hybrid parameters

(client_freq, size_factor)
Number of clients

Server execution
time (sec)

1 (-, -) 30 93.246

2 (31, 30) 30 170.156

3 (2, 10) 30 197.919

4 (5, 10) 30 298.081

5 (10, 10) 30 332.776

Scaling tests were performed with a number of clients up to 500, similar results were

obtained. As the test platform is mostly idle, best effort jobs are scheduled immediately and

rarely interrupted. Another caveat of this toy experiment is that client execution times are

small, leading to a disproportionate impact of the resource manager overheads. The next

step is to design a more realistic experiment either in concurrence with a real production

workload, or at least with synthetic workloads to generate the cluster loads as witnessed in

production environments.

Conclusion and perspectives

The targeted scheduling strategy was successfully implemented and validated. Although

these preliminary tests are limited by the low machine workload, the robustness of this

scheduling technique has been confirmed and many complementary experiments are in

preparation.

REGALE - 956560 44 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

OAR also offers the possibility to submit moldable jobs24, this feature could be added to the

newly designed scheduling technique. This only requires to add the comma separated syntax

below:

oarsub -l nodes=4,walltime=2 -l nodes=2,walltime=4

and can be easily added to Melissa launcher. We can even extend this possibility by executing

workflows on heterogeneous clusters as the Melissa server supports heterogeneous clients

running with different configurations (number and heterogeneity of cores used).

24 http://oar.imag.fr/docs/latest/user/usecases.html

REGALE - 956560 45 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

3 Energy Savings
3.1 Moldability for energy efficiency

Motivation and problem definition

The concept of performance and energy efficiency tradeoffs is well-established in the HPC

community; a large class of applications cannot take full advantage of added resources in

terms of performance, as their scalability is limited by data movement across hierarchies

and/or the interconnect. In literature, this concept is examined as a multi-objective

optimization problem and often regarded as a Pareto frontier 25,26. Modeling approaches 27,28

have been proposed to construct this Pareto frontier and assist in the selection of optimal

resource allocation. In the scheduling literature, applications for which the number of

resources can be decided between runs are called moldable, in opposition to applications

requiring the same number of resources for every run which are rigid. Furthermore,

malleable applications can even change their resource requirements at runtime. While most

parallel applications are in principle moldable, and even malleable if the underlying

programming model supports it, the current state of practice in resource management

regards application resource requirements as rigid, leaving no flexibility to the system

manager to take advantage of this Pareto frontier of possible allocations. A number of works

consider the concept of moldability and/or malleability in the resource manager for

power-aware or power-bound job management 29,30. While existing techniques that employ

the concept of moldability may be sufficient to operate a system under a power budget,

moving away from the current state of practice also requires shifting from the current

paradigm, where only the user is responsible for performing the necessary estimation of

resources for their jobs, while maintaining high user satisfaction (or else, Quality of Service).

User satisfaction metrics include waiting time, turnaround time, and slowdown, which can

be conflicting goals for a resource manager attempting to maintain high throughput, at a

given power budget, with a specified energy footprint.

30 Patki, T., Lowenthal, D. K., Sasidharan, A., Maiterth, M., Rountree, B. L., Schulz, M., & De Supinski, B. R. (2015, June).
Practical resource management in power-constrained, high performance computing. In Proceedings of the 24th
international symposium on high-performance parallel and distributed computing (pp. 121-132).

29 Sarood, O., Langer, A., Gupta, A., & Kale, L. (2014, November). Maximizing throughput of overprovisioned hpc data
centers under a strict power budget. In SC'14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (pp. 807-818). IEEE.

28 Endrei, M., Jin, C., Dinh, M. N., Abramson, D., Poxon, H., DeRose, L., & de Supinski, B. R. (2019). Statistical and machine
learning models for optimizing energy in parallel applications. The International Journal of High Performance Computing
Applications, 33(6), 1079-1097.

27 Endrei, M., Jin, C., Dinh, M. N., Abramson, D., Poxon, H., DeRose, L., & de Supinski, B. R. (2018, November). Energy
efficiency modeling of parallel applications. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis (pp. 212-224). IEEE.

26 Gschwandtner, P., Durillo, J. J., & Fahringer, T. (2014, August). Multi-objective auto-tuning with insieme: Optimization and
trade-off analysis for time, energy and resource usage. In European Conference on Parallel Processing (pp. 87-98). Springer,
Cham.

25 Balaprakash, P., Tiwari, A., & Wild, S. M. (2013, November). Multi objective optimization of HPC kernels for performance,
power, and energy. In International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (pp. 239-260). Springer, Cham.

REGALE - 956560 46 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

In fact, to move away from the existing paradigm, the resource manager needs to be

enhanced with three features: a) the ability to handle moldable applications, i.e. pick from a

set of available options for each job submitted, b) the incorporation of energy optimization

targets beyond the traditional optimization targets, and c) the ability to predict the execution

behavior of an application based on previous runs in order to utilize the aforementioned

moldability features, even when the user does not provide the relevant information. In this

way the RJMS will be able to assume the responsibility of selecting the resources of

applications within their performance/energy/power Pareto frontier, to optimize its target

metric during operation.

Assumptions for a solution

Currently, extensions in resource management software allow users to pass a set of allowed

configurations of resources to the resource manager. Ultimately, we assume that i) the RJMS

will be able to construct the Pareto frontier for a job, based on historical data on

performance, energy consumption, and power consumption, from previous executions,

existing in its database or ii) the RJMS will be able to receive information on the Pareto

frontier of a job from the user (either from experience or by code analysis) and explore

possible configurations. We will rely on existing modelling approaches to build analytical or

ML models for the construction of the Pareto frontier, either by the user or by the resource

manager.

Moldability as the state-of-practice

The introduction of moldability in state-of-practice system managers requires modified

scheduling algorithms, which will be able to select an appropriate configuration of resources

for an application. The goal of the scheduling algorithm will be to encapsulate the following

two optimization strategies:

● A local optimization strategy, which will be able to trade the resources of a particular

job, for energy efficiency, based on its Pareto frontier, without reducing user

satisfaction. For example, if a job is running on many resources to be completed

quickly at a high energy cost, to achieve this local optimum the resource manager will

have to consider how scaling down the resources of a job to achieve better

power/energy efficiency would affect the waiting time, turnaround time and

slowdown for the job.

● A global optimization strategy, which will be able to scale up or down the resources of

a batch of jobs (a workload), to meet the operation targets of the system

(throughput, power budget, energy efficiency, user satisfaction). For example, if the

energy provider of the system wants to globally scale up or down the power input of

the system, the power share of each job has to be reevaluated to match the new

power budget.

Integration in the regale architecture

REGALE - 956560 47 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Our work targets the Resource and Job Management System (RJMS). RJMS constitutes a

software framework employed within the realm of high-performance computing (HPC) to

oversee the distribution of computational resources and the orchestration of user-submitted

job scheduling. We foresee integration with OAR3, which already supports moldability;

instead of a single resource allocation, users can request a number of possible allocations.

OAR3 is a flexible resource and job manager (also known as a batch scheduler or job

scheduler), that is tailored for high-performance computing clusters and diverse computing

infrastructures. Its capabilities encompass the management and scheduling of computing

resources and tasks across a range of environments, including HPC clusters and distributed

computing experimental testbeds.

Moldability feature in OAR3

Primarily, the OAR3 infrastructure already supports the ability to provide users with the

capability of setting multiple resource allocation preferences, during the submission time of

a job. Both infrastructure and time parameters determine a resource allocation preference.

When a user submits a moldable job (i.e., at least two resource allocation preferences),

OAR3 will choose the preference based on the fact that:

● resources could be fulfilled (now or in the future)

● the shorter end-time would occur

It is worth mentioning that the end-time is not always analogous to the wall-time since the

requested resources could lead to different resource slots that could be already occupied,

leading to a waiting time before they are free.

A user is able to submit a moldable job via the OAR3 frontend by executing, for instance, the

command: oarsub -l /nodes=1,walltime=2 -l /nodes=2,walltime=1 /scripts/run.sh. This

submits a batch job with the corresponding script and raises two different resource

preferences/configurations. The first preference requires the allocation of one compute node

for two hours of usage, while the second preference requires two compute nodes for one

hour of usage. Assuming an empty cluster, OAR3 will choose the second option (i.e. -l

/nodes=2,walltime=1), since it will lead to a shorter end-time than the first one. On the

technical level, the implementation of this behavior is executed as a subtask under the

scheduler module.

Initial integration of energy-aware moldability

The new implementation of the energy-aware moldability feature, currently constructs a

simple algorithm as its score function, with a global impact, that is:

More extensively, the flow of the process is:

1. The user passes various resource allocation configurations at job submission.

2. For each of the received configurations, the new implementation calculates the

partial score function by multiplying the number of requested resources -at the

granularity level of the core- by the time in seconds of the estimated end-time.

3. The qualified resource configuration is the one with the minimum score function f.

REGALE - 956560 48 12.04.2024

https://www.codecogs.com/eqnedit.php?latex=score%3D%5Cmin%5C%7Bf(1)%2C%20%5Cldots%2C%20f(n)%5C%7D%2C%5C%3Bwhere%20f(i)%3Dcores_i*endtime_i#0

D2.3 Final integration of sophisticated policies in the REGALE prototype

The modifications have been accomplished inside the OAR3 scheduler module. Specifically,

the responsible statement for choosing the foremost resource configuration has been

substituted by the score function (see Figure 17).

Figure 17: Sequence diagram of the lifecycle until the job starts: The scheduler module has been altered and
modified accordingly to support the new score function’s features (as described in the green box). Note: “User”

corresponds to the user client of OAR.

Moldable energy-aware plugin

The score function is indicated to be transformed into a moldable energy-aware separate

plugin to the OAR3 infrastructure by developing an encapsulation mechanism for the score

function. Consequently, the OAR3 operator will be able to provide its own Python

implementation of the score function. The idea is similar to the current mechanism that

OAR3 already provides with the plugins. Additionally, as already mentioned, the resource

qualification mechanism currently has a global impact without considering the knowledge of

the job’s affiliations such as tagging, behavior, previous runtimes, etc. Thus, a local

optimization target could be implemented, where the energy-aware plugin will have access

to jobs’ characteristics through previous runs (e.g., through the OAR3 database) or

indications specified by the operator, job tagging (i.e., user-labeling of the job at submission

time e.g., compute, memory or communication -intensive).

Within Table 5, we have encapsulated our contributions, showcasing the corresponding

source code alongside comprehensive information pertaining to the associated branches and

releases.

Table 5: Software implementation repositories.

REGALE - 956560 49 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Name Description Repository Branch Release/
Tag

Based on
oar-team

Moldability

for energy

efficiency

Implementing moldability
with a score function that is
based on requested
core-level resources and
estimated end-times,
choosing the configuration
with the lowest score as the
qualified resource option.

https://github.com
/cslab-ntua/oar3

energy_a
ware

3.0.0.dev8 2022/07

Ecosystem of
OAR3

All the necessary
dependencies, libraries, and
OAR3 setup’s characteristics
and configuration

https://github.com
/cslab-ntua/regale-
nixos-compose

main 1.1 2023/10

3.2 ML-based User-Labelling of the Job

Accurate prediction of workload power consumption plays an important role in achieving

efficient power management in HPC systems, as it allows to design strategies to forecast and

control the system’s power consumption (e.g. power capping at the workload manager

level). Predictive models need quality data, which is often limited due to the inherent

complexity of collecting structured data for job power characterization in a production

system.

At UNIBO, to fill the lack of resources for job power prediction, we provided (i) a

methodology to create a job power consumption dataset from workload manager data and

node power metrics logs, and (ii) PM10031, a novel and large dataset comprising around 230K

jobs and the corresponding node, CPU and memory power consumption values recorded

during their execution. The dataset is derived from M10032, a holistic dataset extracted from

a production supercomputer hosted at the HPC centre CINECA in Italy.

Furthermore, we designed a lightweight non-parametric technique combining Machine

Learning (ML) algorithms with Natural Language Processing (NLP) tools to predict maximum

and average users’ jobs power consumption. Given that in HPC systems the jobs belonging to

the same user tend to be similar, we perform job power prediction by considering each

user's data individually, to improve the prediction performance. Our solution employs SBert

to encode the job features, and then it performs the prediction through a k-nearest

neighbors algorithm (KNN). In Figure 18, we present a high-level scheme of the functioning

of the prediction model.

The algorithm incurs a negligible overhead on the system’s operations, as it does not require

any training phase. Moreover, the algorithm leverages only the information available at the

32 Andrea Borghesi, et al. “M100 Dataset 1: From 20-03 to 20-12.” 1.0.0, Zenodo, 31 gennaio 2023,
doi:10.5281/zenodo.7588815.

31 Antici, F., et al. “PM100: A Job Power Consumption Dataset of a Large-scale HPC System”. Proceedings of the SC '23
Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis, Zenodo, 24
novembre 2023, doi:10.5281/zenodo.10127767.

REGALE - 956560 50 12.04.2024

https://github.com/cslab-ntua/oar3
https://github.com/cslab-ntua/oar3
https://github.com/cslab-ntua/oar3/releases/tag/3.0.0.dev8
https://github.com/cslab-ntua/regale-nixos-compose
https://github.com/cslab-ntua/regale-nixos-compose
https://github.com/cslab-ntua/regale-nixos-compose
https://github.com/cslab-ntua/regale-nixos-compose/releases/tag/1.1

D2.3 Final integration of sophisticated policies in the REGALE prototype

time of the job submission (e.g. username, job name, and amount of hardware requested),

since in a real system those are the only data available before the job is scheduled and

executed. We considered, as the target of the prediction, the maximum/average job node

power consumption, normalised on the number of nodes allocated to the job during its

execution. We do that to predict each job power consumption as if it was running on a single

node, thus making the prediction task less error-prone and more useful in the context of

workload scheduling33 34. The proposed algorithm works in an online fashion, meaning that

jobs are treated as continuous streaming in time and the models are re-trained periodically

to adapt to the change of workload in the system.

We test our solution on the job power data comprised in PM100, and we obtain a Mean

Absolute Percentage Error around 20% on both the average and the maximum job power

consumption prediction. We further estimate the whole system power consumption in a

certain timeframe by summing the power consumption of the jobs running concurrently in

the system, in that specific timeframe. When using the predictions obtained with our

solution instead of the actual job power consumption, we are able to reconstruct the whole

system maximum/average power consumption with an error ≲ 10%.

We also explored the prediction of the job power consumption at the CPU and memory

level, obtaining similar results.

Figure 18: High-level scheme of the user based power prediction algorithm for a new job.

3.3 Integration of ML Models in Production System

At UNIBO, a Machine Learning (ML) production framework has been developed for

integrating ML models with production systems. This framework consists of three main

subsystems: the monitoring subsystem, the ML operation subsystem, and the ML

34 Khaleghzadeh, Hamidreza, Ravi Reddy Manumachu, and Alexey Lastovetsky. "Efficient exact algorithms for continuous
bi‐objective performance‐energy optimization of applications with linear energy and monotonically increasing performance
profiles on heterogeneous high performance computing platforms." Concurrency and Computation: Practice and Experience
35.20 (2023): e7285.

33 Qureshi, Basit. "Profile-based power-aware workflow scheduling framework for energy-efficient data centers." Future
Generation Computer Systems 94 (2019): 453-467.

REGALE - 956560 51 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

anticipation/prediction model (e.g., anomaly prediction/detection models, forecasting of

node’s/job’s characteristics) (See Figure 19).

Figure 19: HPC monitoring and Machine Learning Operations framework.

Monitoring System:

The CINECA datacenter features a holistic monitoring framework, ExaMon, which aggregates

a wide set of telemetry data collected via a set of plugins (one for each monitored

component) that read the sensor and communicate to the ExamonDB via MQTT messages.

REGALE - 956560 52 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

ExamonDB uses Cassandra and KairosDB technologies. The different monitored components

are at the system level, the job scheduler, the cooling and power provisioning equipment,

while at the compute node level, Nagios and Ganglia for in-band telemetry and IPMI for

out-of-band telemetry. The complete list of collected metrics is described in M100 ExaData35.

The ExaMon monitoring system collects sensor data and stores these data in its internal

KairosDB database as time traces and is remotely accessible through REST APIs.

Machine Learning Model:

This subsystem can contain different machine learning models used by the sophistication

algorithms. Several models have been discussed in the previous sections with inherently

different trade-offs between network complexity (number of parameters), number of input

features, and accuracy. The framework will query the input features from the monitoring

system, and will compute the inference. In the next section, we will analyze the performance

of the proposed framework in terms of throughput (inference/s) and latency breakdown, as

well as its associated overheads and computational costs (CPU, network, and memory

usage). We report three types of model results: the model described above, which uses job

information before submission, which consists of a limited number of input features, the

models using a medium number of input features, which is the case of rack-level forecasting

(power, availability), this model may use as input subset of the node’s features and models

using large number of input features which are the case of forecasting of node’s

characteristics (power, availability), this models may use as input all the node’s features

(~hundreds x time-slice x # of nodes). These three different model types will vary in the

computational cost associated with data retrieval and inference computation.

Machine Learning Operations

Figure 19 illustrates the architecture of the HPC monitoring and ML operations framework.

Horizontally, it consists of three main components: the monitoring system, the ML models,

and the git repository and container registry. The abstraction layers of the ML component are

summarized from bottom to top as follows: (i) The on-premises cloud layer hosts all the tools

needed on the higher layers. (ii) The software platform for automating the deployment,

management, and scaling of containerized applications, namely Kubernetes. (iii) The

software tools for ML and (Machine Learning Operations) MLOps on top of Kubernetes. This

layer provides an environment for the user to develop, test, and deploy the ML models,

namely Kubeflow.

The monitoring system runs in the HPC cloud infrastructure and is not based on Kubernetes.

Kubeflow provides a flexible framework for data analytics development and deployment,

consisting of dashboards, JupyterLab, and Kubeflow Pipeline. This is implemented in

micro-services using the Kubernetes container orchestration framework.

35 Borghesi, Andrea, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi,
Daniela Galetti et al. "M100 ExaData: a data collection campaign on the CINECA’s Marconi100 Tier-0 supercomputer."
Scientific Data 10, no. 1 (2023): 288.

REGALE - 956560 53 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The proposed framework’s key steps are depicted in Figure 19. The data analytics pipeline for

deploying the trained ML models is designed using the JupyterLab services provided by

Kubeflow. The pipeline consists of a set of Python scripts responsible for (1) extracting data

from the monitoring system, (2) preprocessing and transforming data to a format useful for

the ML model, (3) making predictions based on input samples (inference), and (4) publishing

the results to the monitoring system via the Examon plugin and MQTT protocols.

A Git repository is used to store these scripts, in conjunction with the trained ML models

(with its weights/parameters), and a Dockerfile, which outlines the necessary packages and

actions for containerization (step 1 in Figure 19). We configured the Git repository to

automatically build a Docker container and push it to the container registry after each

update (CI/CD) (step 2). With this final step, the development phase is concluded as we

created a Docker container with all the dependencies and scripts needed for the data

analytics pipeline to execute and automatically push the image to the Docker registry.

Further updates in the git repository will automatically lead to an update of the container

image and deployment environment.

The deployment phase consists of executing the containers developed above in Kubernetes

containing the data analytics pipeline. The first step consists of creating a pipeline and

running it as pods, which will be the target of the deployment. To implement the scripts and

container developed in the previous step into a production system, we need to create a

pipeline. This involves determining the necessary container images, specifying their runtime

behaviour, and configuring them accordingly. It is also necessary to define the inputs and

outputs of the pipeline. Once the pipeline is defined, it can be run in Kubernetes.

The pipeline can be created in Kubeflow using Kubeflow Pipeline Python SDK. After defining

the pipeline, it is executed. This pulls the required container images from a container registry

(step 3 in Figure 19) and runs the pods in Kubernetes (steps 4, 5). When running as a pod in

Kubernetes, the pipeline generates failure prediction signals for the supercomputing nodes.

The ExaMon plugin and MQTT protocol automatically transmit these signals to the

monitoring system. The monitoring system visualizes the results of ML model inference, such

as the failure probability, node characteristics (power, etc) in a dashboard. This allows the

system administrator or software to take appropriate countermeasures. While the ML

pipeline handles the in-production model inference, the training is deployed via SLURM jobs

on the Marconi 100 HPC system. ML models need significant computing resources for their

training. Supercomputers are particularly suited to meet this requirement, while a cloud

environment may not be ideal as it may lack dedicated accelerators. Consistency between

the trained model version and the model used in inference is guaranteed by storing the

model parameters as part of the data analytics pipeline repository and its integration with

CI/CD, which will generate new containers upon repository updates.

Deployment Evaluation

To implement the proposed framework, we employ a cloud system hosted in the CINECA

supercomputing facility (on-premise) without creating any overhead on the HPC nodes. This

REGALE - 956560 54 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

cloud infrastructure is based on the OpenStack version of Wallaby. The nodes of this cloud

system are composed of Dual-Socket Dell PowerEdge servers, 2xCPU 8260 Intel CascadeLake

processors (24 cores, 2.4GHz), 48 cores per node, hyperthreading x2, 768GB DDR4 RAM, and

an internal network of Ethernet 100GbE. The OpenStack virtual machine executes the

ExaMon production, which we extended with additional ones for the Kubeflow and

Kubernetes pods needed by the MLOps. The computational resources available for the

ExaMon monitoring systems are 300GB of RAM and 40 vCores. We also collect standard

Kubernetes metrics. For implementing the MLOps framework, we used Kubernetes version

1.24 in our framework for automated deployment, scaling, and management of

containerized applications. Our Kubernetes cluster has 48 vCPUs and 360 GB of RAM

available. For Kubeflow, we used the canonical Charmed Kubeflow version 1.6.

We analyzed three types of neural networks, each requiring varying amounts of input data or

data points. The data points must be extracted from the database. As will be indicated in

Table 6, the data extraction phase is the most time-consuming part of the pipeline. Following

this, the pipeline includes steps like data preprocessing, inference, and reporting results back

to the monitoring system. These steps may vary in latency or computation overhead

depending on the size of the data points and the NN model. These three profiles represent

different classes of the Neural Network (NN) model. They require less than 1K, approximately

100K, and around 5M data points. For these three sizes, we evaluated the inference

pipeline’s computing time, network, memory, and computing cost.

We collected several metrics to evaluate our pipeline, including data extraction latency,

preprocessing time, inference computing time, and publishing results latency. These metrics

are measured in seconds and presented in Table 6. We also monitored resource usage,

including CPU and memory usage and the number of pods used. The corresponding metrics

are summarized in Table 7, which shows resource usage for the baseline setup and the three

different types of NN models (in view of input data size); the results are grouped into five

sub-tables, reporting the resource usage for the monitoring system/ODA (”ExaMon”

sub-table), Kubernetes management, Kubeflow management, user workload not including

the NN inference (”User Namespace” sub-table), and the workload due to the NN models

pipeline (”ML Production pipeline” sub-table).

Computational Resources Overhead

Table 6 shows the latency for different pipeline parts. The last column reports the inference

rate, measured as the number of inferences per hour each NN model type achieves. In

pipelines, the inference rate depends on the processing time and latency of the pipeline.

Data extraction is the most time-consuming step in the pipeline. Pre-processing only takes up

1% of the data extraction latency, and inference time is less than 1%. As evident in Table 6,

when scaling the pipeline from the limited number of data points (e.g., from one rack to all

REGALE - 956560 55 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

the racks of the Marconi100 supercomputers), we notice that the data extraction time scales

sublinearly - while increasing the data request of 50x the query time to the ExaMon

monitoring system increases only by ~ 5x. After extracting the data, the data preprocessing

step requires the second most computing time, while the inference and result publishing

steps take negligible time. This result indicates that the proposed framework can scale to

exascale system requirements. Moreover, being the pipeline bottleneck, the data extraction

of more complex models can be afforded with the current system at a negligible cost.

To better understand the implication and cost of the proposed MLOps framework in

conjunction with ODA, we collected resource usage data for different parts of the monitoring

system, Kubernetes, and Kubeflow without running any pipelines to determine the base load

of the framework (as shown in Table 7). By looking at the baseline case (Baseline in Table 7),

we can notice that the ExaMon ODA framework under normal operations (continuous data

collection from the different sensors and dashboards) consumes 3 virtual cores (vcores) and

190GB of memory, while the MLOps framework while not processing any data analytics

pipeline uses 75 pods (13 used by Kubernetes, 59 Kubeflow, 3 user namespace), 0.66 vcores

and almost 7GBs of memory for its micro-services – almost the 22% more vcores and 4%

more memory than the pure monitoring framework. Interestingly, when a real-time ML

model pipeline is performed (for ~5M input data points in Table 7) for all the nodes of the

Marconi100 supercomputer, the ExaMon load increases from 3.08 to 3.41. And the MLOps

load increases, from 0.66 vcores to 0.96 vcores with a relatively negligible cost for real-time

inference (0.03 vcores). As a result, supporting a real-time ML model in production on the

Marconi100 supercomputer requires 30% more vcore resources than merely monitoring it.

Of this 30% increase, 11% is attributable to the increased load on the monitoring system,

while the remainder is associated with the MLOps component. The ML inference pipeline

accounts for less than 1% of the entire overhead, making it ready to scale to larger

supercomputers, like exascale systems.

Table 6: Processing time and latency of different deployment configurations.

MLOps Pipeline Stage Execution Time [s]

Data
Points

Data
Extraction [s] Preprocessing [s] Inference [s]

Publishing
Results [s] Total [s]

#Inference
/Hour

~1K 4.2 0.11 0.013 0.002 4.325 832

~100K 10.33 0.15 0.014 0.002 10.496 343

REGALE - 956560 56 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

~5M 50.238 4.6 0.337 0.06 55.235 65

Table 7: HPC monitoring and MLOps framework computation resource requirements and ML model pipeline

deployment overhead; the 5 main sub-tables indicate the different framework’s components.

Data
Points

ExaMon Kubernetes

#vcores Mem
[GB]

Net in
[kB/s]

Net out
[KB/s]

pod
s

#vco
res

Mem
[GB]

Net in
[kB/s]

Net out
[KB/s]

- 3.08 189.5 6670 6739 13 0.31 0.63 1350 864

~1K 3.35 189.5 6680 7334 13 0.31 0.63 1430 870

~100K 3.59 189.5 9588 7732 13 0.31 0.63 1780 880

~5M 3.41 189.5 8686 7975 13 0.31 0.63 1910 880

Data
Points

Kubeflow User Namespace

pods #vcore
s

Mem
[GB]

Net in
[kB/s]

Net out
[KB/s]

pod
s

#vco
res

Mem
[GB]

Net in
[kB/s]

Net out
[KB/s]

- 59 0.22 5.44 23 28 3 0.13 0.47 7 1

~1K 59 0.22 5.41 24 30 3 0.2 0.5 8 1

~100K 59 0.23 5.41 26 32 3 0.2 0.91 8 1

~5M 59 0.22 5.41 31 32 3 0.4 1.63 21 1

Data
Points

ML Production Pipeline

pods #vcore
s

Mem
[GB]

Net in
[kB/s]

Net out
[KB/s]

- - - - - -

~1K 1 0.01 0.4 1 1

~100K 1 0.01 0.44 1 1

~5M 1 0.03 1.07 14 1

3.4 Node level power controls (BDPO)

Bull Dynamic Power Optimizer (BDPO) is a lightweight tool whose goal is to optimise at

runtime the energy-efficiency associated with the execution of an HPC application. To do so,

one standalone instance of BDPO runs in parallel with the target HPC application on each

involved compute node. It implements system-wide monitoring of processor-centric

performance metrics through the Performance Monitoring Units (PMU) embedded in the

compute cores of the CPUs. Indeed, using those metrics, such as the number of Instructions

retired Per reference Cycle of the processor (IPC), BDPO can identify phases of low

computational intensity and apply Dynamic Voltage and Frequency Scaling (DVFS). In a few

REGALE - 956560 57 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

words, DVFS consists in switching at runtime the (frequency, voltage) operating point of a

compute core of the processor. When compared to its nominal frequency, operating a

processor at lower frequencies makes it exhibit less computational power and draws less

electrical power. As a result, by adapting the frequency of the CPU to its computational load,

it is possible to decrease its average power consumption while inducing only a limited, nay

negligible, impact on the time-to-solution of the optimised HPC application. Hence,

optimising the energy-efficiency associated with the execution of the target HPC application.

As a concluding note regarding this short description of BDPO, let’s highlight that its

approach makes it completely agnostic of the optimised application. Indeed, since the

implemented monitoring and DVFS are system-wide, the target application remains a black

box to BDPO. Thus, there is no need to modify or even rebuild an application before trying to

optimise its energy-efficiency with BDPO.

This section describes the work associated with BDPO carried out in the context of the

REGALE project. To begin with, the first subsection is about the integration of BDPO with

OAR, which is the Resource and Job Management System (RJMS) of the REGALE toolsuite.

Then, an evaluation of the portability of the approach of BDPO to GPU-accelerated compute

nodes is presented in the second subsection. Finally, the third and last subsection gives the

rationale underlying the complete refactoring of BDPO to support next generations of

CPU-centric compute nodes.

3.4.1 Integration with OAR

To begin with, BDPO had to be integrated into the REGALE software stack so that it should be

possible for the end-users to use it to optimise the energy-efficiency associated with the

execution of their HPC applications.

In order to execute, BDPO requires elevated privileges on the compute nodes of the HPC

cluster to be able to enforce DVFS. As a result, it is necessary to provide end-users, who

usually do not have elevated privileges, a means to start and stop BDPO to optimise the

energy-efficiency associated with their jobs.

To do so, prolog and epilog scripts for OAR, the RJMS integrated in the REGALE prototype,

were written. Indeed, OAR has elevated privileges, and can, hence, start and stop BDPO for

the job launched by the end-user when required to do so thanks to the associated command

line option:

$ oarsub -t bdpo=monitor -l nodes=4/walltime=2 user_job

$ oarsub -t bdpo=optimize -l nodes=4/walltime=2 user_job

Note that it is possible to specify which execution mode of BDPO is to be used: either only as

a monitoring tool, or as a power-optimizer through DVFS enforcement.

Finally, on top of that, an entry is added to the eventLog table of the database associated

with OAR, so as to log the use of BDPO, and its execution mode, for the concerned job.

REGALE - 956560 58 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

3.4.2 Porting the approach of BDPO to GPU

To optimise the energy-efficiency associated with the execution of an HPC application, BDPO

enforces DVFS on the processors of the compute nodes. Hence, even if it can have an effect

on the power consumption of other components, the frequency scaling performed by BDPO

solely affects the power consumption of the processors. On CPU-centric compute nodes, the

latter usually represents between 60% and 80% of the total power consumption of the

compute node, which makes DVFS on CPUs the most significant lever for energy-efficiency on

this type of compute node.

However, with the shift toward GPU-accelerated compute nodes, the contribution of the

processors to the total power consumption of the compute node tends to become marginal.

For instance, a BullSequana XH2415 compute node (the nodes of JUWELS36, currently 18th of

the TOP500 ranking) features two AMD EPYC 7402 (Rome) processors, and four NVIDIA

A100-40 (Ampère). The power consumption of the CPU part of the node is less than 15% of

the total one, while the GPU part is accountable for roughly 80% of the latter. It means that

reducing the energy consumption of the processors by a third is equivalent to reducing the

energy consumption of the accelerators by only a sixteenth. It thus clearly appears that

porting the approach of BDPO to GPUs would be of uttermost importance for the ExaScale

era.

Context of the exploration work

To begin with the definition of the context of the exploration work to port the approach of

BDPO to accelerators. The first thing to highlight is the fact that there is not common and

open-source management and monitoring interfaces for GPUs. Each vendor implements and

supplies its own set of tools to do it. As a result, only one vendor, namely NVIDIA, was

selected for this initial investigation step. In the remainder of this section, all the presented

results stem from experiments carried out on NVIDIA Ampère A100-80 GPUs.

Then, let's precise that three GPU-ready HPC applications were used to evaluate the

prototypes porting BDPO approach to accelerators:

● HPCG37, the well-known HPC performance benchmark built upon the conjugate

gradient computing recipe;

● PW from QuantumEspresso38 (QE-PW), whose goal is to compute molecular

electronic-structure properties. It was applied to the small UEABS test case named

AUSURF39, with 112 atoms;

● EasyWave40, which is an application which simulates tsunamis given coast topology.

Originally written for CPU, it was ported to GPU with CUDA in 2014. It was executed

40 EasyWave git repository: https://git.gfz-potsdam.de/id2/geoperil/easyWave

39 AUSURF test case: https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/quantum_espresso

38 QuantumEspresso home webpage: https://www.quantum-espresso.org/

37 HPCG home webpage: https://hpcg-benchmark.org/

36 TOP500 system information for JUWELS: https://www.top500.org/system/179894/

REGALE - 956560 59 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

with one of the datasets provided with the application, namely the one labelled

“large”.

Final point regarding the experimental context associated with the exploration work: each

experimental condition was executed at least 11 times, and the presented results are

average values with 95%-confidence intervals.

Additional constraints imposed by the GPUs

As explained in the introductory section, for processors, BDPO relies on system-wide

fine-grained monitoring to detect phases with low computational needs, during which it

applies DVFS at the scale of a compute core. However, accelerators exhibit some constraints

which make it impossible to simply duplicate the approach of BDPO.

First, to monitor refined metrics such as the IPC during the execution of an application on an

NVIDIA GPU, the CUPTI Profiling API must be initialised and used. The only way to do so is by

annotating the source code of the target application, which is intrinsically in opposition with

the application-agnosticity of BDPO. Thus, another metric representative of the

computational intensity of the executed GPU kernel had to be designed using the NVML API,

which is accessible from both the host and the GPU (that is to say from both inside and

outside of the target HPC application). After several tries, the metric which seemed the most

representative of the computational intensity was the occupancy rate of the Streaming

Multiprocessors (SM). Yet, it was far less accurate and slightly less relevant than IPC was on

the CPU side.

Second and last additional constraint to be mentioned when working with accelerators: DFVS

is system-wide and the range of availables frequencies is narrower41. The first part means

that the frequency can only be scaled for the whole GPU, and not for a specific SM for

instance. And the second part means that the maximum achievable decrease of the average

power consumption is lesser than on an average CPUs (since the dynamic part of the power

consumption depends on the operating frequency of the computing element).

With the above constraints in mind, two different adaptations of the approach of BDPO for

accelerators were designed.

First prototype: API interception

The CUPTI CallBack API offers a way to intercept CUDA functions provided by both its

RunTime and Driver APIs. Among those functions, two are specifically of interest: (1)

cudaMemCpy which is called when a data transfer between the host RAM memory and the

accelerator vRAM memory has to be performed, and (2) cuKernelLaunch which is called

when the execution of a kernel should start on the GPU. The rationale of this prototype,

named "API interception prototype" is the following:

41 As an example: [1005MHz, 1410MHz] for an A100-80 NVIDIA GPU versus [1200MHz, 3200MHz] for an Intel
Xeon 'Skylake' Gold 6146 CPU.

REGALE - 956560 60 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

● When a data transfer is detected, and the SM occupancy rate is below a certain

threshold, the computational load of the GPU is most probably low. Thus, the

frequency of the GPU can be decreased, following the same logic as the approach of

BDPO;

● When the execution of a kernel is to be started on the GPU, the frequency of the

latter is scaled up (if necessary), in order to avoid performance degradations. Once

again, this follows the same logic as the approach of BDPO.

Three additional notes. First, since scaling the frequency of the GPU is a relatively tedious

and time-consuming operation, it should not be performed too often. Thus, to prevent small

data transfers from triggering consecutive and close in time frequency scalings, which would

most likely be heavily counterproductive regarding performance degradations, only large

enough data transfers are considered. Empirically, it was determined that 10 GB was a

decent threshold to regard a data transfer as large. Second, based on experimental

observations, the threshold on the SM occupancy rate was set to 10%. Third, and this is true

for the remainder of the document, scaling down the GPU frequency means setting it to its

minimum value, which is 1005MHz for the considered accelerator. In the same way, scaling

up the GPU frequency means setting it to its maximum and nominal value, which, here, is

1410MHz.

To conclude this section, let's note that this prototype is referred to as "proto 10" in the

upcoming figures, as a reference to its two inner thresholds being set to 10.

Second prototype: BDPO-alike daemon

The second prototype, named "daemon prototype", consists of a daemon running on the

host part of the compute node. It monitors the occupancy rate of the SM through the NVML

interface, from the host processors. With the same rationale as the first prototype, if this rate

goes under a 10% threshold, it is considered that the GPU is under a low computational load,

which then triggers a downscaling of the frequency of the GPU. On the contrary, when the

occupancy rate is back above the 10% threshold, the frequency of the accelerator should be

scaled up to avoid performance degradations. This daemon should be started before the

execution of the target HPC application runs on the GPU, and stopped after the latter ends.

This workflow is similar to the one of BDPO, and was a good candidate for the

implementation of a Slurm SPANK plugin so as to be able to automatically handle its lifecycle

at the time of job submission. Integration with OAR is also technically possible, but since the

technical details are slightly different it was not pursued.

Just as for the first prototype, let's conclude this section by noting that this prototype is

referred to as "proto dmon" in the upcoming figures.

Results for HPCG

Figure 20 shows that executing HPCG while letting the daemon prototype manage the

frequency of the GPU yields the same performance as the "1410 MHz" configuration, which

represents executions at the constant maximal frequency of the GPU. In the remainder of

REGALE - 956560 61 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

the experimental discussions, this configuration acts as the reference to which others are

compared, since it is the most commonly encountered default configuration for GPUs in an

HPC production environment. However, the "proto dmon" configuration entails a 8%

decrease of the energy consumption, thus significantly improving the energy-efficiency of

the execution of HPCG.

In the same way, letting the firmware of the GPU manage its frequency (which is referred to

by the label "no constraints" on the figures) yields the same performance as the "1410 MHz"

configuration while saving 6% of energy. From those two observations, it can be gathered

that the firmware of the GPU tries to adapt the frequency of the latter to its load.

Figure 20: Speedup and energy savings for HPCG with 95%-confidence intervals. For both, higher values are
better.

Regarding the "API interception" prototype, its use results in even more energy savings

(14%), while the induced slowdown remains acceptable (3%).

Thus, for HPCG, both prototypes yield satisfying results with significant energy savings and

no significant slowdown.

Results for QE-PW

Figure 21 shows that executions of QE-PW with the "no constraints" configuration on

average yields a 3% slowdown for no energy gain when compared to "1410 MHz".

Now looking at the two prototypes, it appears that "API interception" one induces a 2%

increase of the energy consumption accompanied by a 6% slowdown. Regarding the daemon

prototype, it manages to maintain an acceptable 3% slowdown for only a 1% energy gain.

REGALE - 956560 62 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 21: Speedup and energy savings for QE-PW with 95%-confidence intervals. For both, higher values are
better.

The speedup plot shows that the Times-to-Solution (TtS) of the executions of QE-PW seem to

depend linearly on the frequency of the GPU. This kind of trend characterises heavily

compute-bound executions of HPC applications. Therefore, it is not surprising that the results

yielded by the two prototypes are deceiving, since it is not an easy task to improve the

energy-efficiency of a compute-bound application through DVFS.

Results for EasyWave

Figure 22 shows that both the "no constraint" configuration and the daemon prototype do

not induce any significant slowdown while saving energy significantly (respectively 5% and

11%). However, due to an incompatibility between the way the API calls are intercepted by

the other prototype and the way EasyWave was ported to GPU, it was not possible to use the

former to try to optimise the energy-efficiency of the latter.

It can also be observed that downscaling the GPU frequency entails little to no slowdown.

This behaviour is typical of memory-bound HPC applications, which are usually good

candidates for the approach of BDPO. This tends to explain the encouraging results exhibited

by the daemon prototype.

Figure 22: Speedup and energy savings for EasyWave with 95%-confidence intervals. For both, higher values are
better.

Figure 23 demonstrates that the "1095 MHz" configuration seems to be the best from the

energy-efficiency point of view, since it minimises the Energy Delay Product (EDP). Looking

back on Figure 23, the 1095 MHz frequency actually provides an energy reduction of 26% for

only a 1% slowdown.

Figure 23: Energy Delay Product (EDP) for EasyWave with 95%-confidence intervals. Lower values are better.

REGALE - 956560 63 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

However, finding out that this exact frequency is the best one would require executing the

application several times to roam the range of available frequencies. On the contrary, the

daemon prototype while providing more modest but still solid energy savings (11%) for

negligible performance degradations (1%° did it without any prior execution. And the EDP

associated with the execution for the "proto dmon" configuration is lower than the ones of

the "no constraints" and "1410 MHz" configuration, indicating a better energy-efficiency.

Conclusions and feedback from NVIDIA

Let us now summarize what was observed in the above experimental discussions, and draw

some conclusions. One the one hand, for the selected panel of three HPC applications the

daemon prototype globally exhibited promising results, being able to yield reductions of

energy consumption without significant performance degradation, even for QE-PW which is

compute-bound. On the other hand, the results associated with the “API interception”

daemon were mixed, and it could not be used with EasyWave. As a result, from this

experimental exploration it appeared that the way to port the approach of BDPO to GPUs

implemented by the daemon prototype was the one to be favoured.

However, the occupancy rate of SM seemed less relevant than the IPC for CPUs to estimate

the computational load of the GPUs. On top of that, the firmware of the NVIDIA A100-80

accelerator seemed to be managing its frequency based on the aforementioned

computational load. Those two observations lead to a series of discussions with NVIDIA to

ask for their feedback on our approach, and to try to gain some knowledge of what the

firmware is doing regarding frequency management. The key points of those discussions are

the following:

● The occupancy rate of SM was considered not representative enough of the

computational load of the GPU by the NVIDIA engineers, who recommended not

using it to decide when to enforce DVFS;

● The hardware of the accelerator exposes more than 300 metrics to the firmware,

among which only a handful are exposed through the CUPTI Profiling and NVML APIs.

The decision made by the firmware regarding power management are mostly based

on metrics not exposed through the APIs;

● Starting with the Hopper generation of GPUs, Machine Learning (ML) and Neural

Networks (NN) models are built based on the aforementioned set of metrics exposed

to the firmware to improve notably the power management of the GPU;

● More metrics should be exposed to end-users of the accelerators through the CUPTI

Profiling and NVML APIs in the next generation of GPUs (coming after the Hopper

generation and to be released in 2025).

As a result, it was decided to put the porting of the approach of BDPO to GPUs on hold, and

to wait for the next generation of GPUs which, hopefully, will expose more metrics and

fine-grain control knobs for power management.

REGALE - 956560 64 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

3.4.3 Complete refactoring of BDPO

Initially, it was planned to work on several new features for BDPO. The latter included for

instance the integration of performance models to make BDPO capable of predictive DVFS

rather than only resorting to reactive frequency scaling.

However, those plans had to be revised. Indeed, major technological ruptures in the

architecture and microarchitecture of the compute cores of modern processors occurred,

starting with Intel Ice Lake and AMD Milan. Among those changes, the fact that the

Performance Monitoring Unit (PMU) of the compute cores are no longer shared by logical

cores associated with the same physical core greatly impacted BDPO. As a matter of fact, the

latter resorted on the fact that all the logical cores associated with the same physical cores

could be monitored through the same PMU. As a result, on those latest generations of

processors, one monitoring thread must be spawned for each logical core, instead of one per

physical core. Additionally, the number of cores of modern processors is ever increasing,

nearing 400 logical cores for high-end dual socket AMD Genoa compute nodes. However, the

legacy implementation of BDPO features several blocking synchronisation points in its main

loop. Consequently, on those latest generations of processors, the processor time taken by

BDPO skyrocketed, mainly due to time wasted in the aforementioned synchronisation. It

made its action far less efficient, nay counterproductive.

Thus, any new feature would have had little to no value with BDPO inherently degrading the

performance of the target HPC application by the sole effect of its monitoring loop. That is

what motivated a deep refactoring of BDPO internals, which was soon extended into nearly a

complete rewrite. Indeed, this refactoring was seen as the perfect opportunity to rethink the

whole structure of BDPO to pave the way for the implementation of its future features.

Now at the end of the REGALE project, the refactoring of BDPO is nearing completion, and its

core features were ported to the aforementioned new generations of processors. According

to the roadmap of BDPO, the features still to be ported should be completed by the end of

2024.

3.5 Thermal and Power control on a node level (ControlPULP)

In this section we will first discuss the sophistication for integrated node-level power and

thermal control, then we will discuss ML models which can be used to detect node-level

critical thermal conditions which can lead to room-level thermal hazards.

Until two decades ago, power management (PM) was an exclusive responsibility of the

Operating System (OS) running on top of application-class processors (AP). The OS agent

handling PM in the OS is known as operating system-directed configuration and power

management (OSPM). Bearing all the power policy responsibility on the OSPM brings several

drawbacks. Firstly, the complex interaction between power, temperature, workload, and

physical parameters in an integrated system on chips (SoCs), coupled with additional safety

and security requirements, might be too complex for the OS to manage while simultaneously

REGALE - 956560 65 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

optimizing workload performance. Secondly, the OS does not have introspection on the

application behaviour and events, but can only operate on timer-based tick instants, or

slower. Finally, in a central processing unit (CPU) thermal constants, power and current can

vary so quickly that OSPM software (SW) is unable to deal with them timely. For instance, the

timer resolution in Linux (jiffy) is in the range 1 − 10ms while cores’ thermal constants are in

the order of ms.

Historically, these issues called for a paradigm shift in PM responsibilities within

high-performance computing processors. The new paradigm transitions from an OS centric

to a delegation based model where user-space power management runtimes

(Node-manager and Job Manager in REGALE/ HPC PowerStack nomenclature) collaborate

with general purpose, on-chip embedded HW power controllers units. In this schema, the OS

has to provide a power management interface (PMI) between these two components. This

communication layer could potentially add significant delay to the process, increasing the

risk of deadline misses and introducing performance penalties to the overall end-to-end

power management service.

In REGALE we target the use of the ControlPULP IP developed in the

european-processor-initiative (EPI) project which provides an open-source HW

implementation of on-chip embedded power controller units with associated power

management firmware. At the time of the deliverable preparation, the ControlPULP IP is

integrated into the Rhea design by SiPEARL. Since there is not yet Rhea processors available

the EPI project has released together with the ControlPULP IP an FPGA emulation platform

based on the Xilinx Ultrascale+ ZCU102 SoC which integrates the ControlPULP HW/FW IP in

the Programmable Logic (PL) with a Processing System (PS) composed of two Arm A53

processors.

The on-chip power controller periodically interfaces with Process, Voltage, Temperature

(PVT) sensors and actuators and responds to Job Manager and Node Manager directives

from the OSPM and user’s applications through dedicated HW and SW PMIs.

These on-die interactions are collectively known as in-band services, and are the main focus

of the present integration. Finally, the on-chip power controller interfaces with the BMC on

the motherboard to support off-chip system services, also called out-of-band. These

comprise fine-grain telemetry on the chip power and performance status, chip-level and

system-level power capping, and reporting errors and faults in the chip and central

processes.

The Job Manager and Node Manager are agents that control the node’s and job power policy

by interfacing with Linux OSPM. Usual tasks subsumed by the OSPM are Application

Processors (AP) idle and performance PM, device PM, and power monitoring. These tasks are

managed by OSPM governors, routines tightly coupled with the OS’ kernel scheduling policy.

An HPC workload consists of parallel applications distributed across all PEs of a set of

REGALE - 956560 66 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

processors, with one process per core. Under these conditions, the performance, powersave,

and userspace governors exhibit the same behaviour — selecting the highest operating

frequency. However, state-of-the-art processor PM strategies often leverage application PM

run-time, which isolates different phases of the application and requests a new dynamic

voltage and frequency scaling (DVFS) level from the OSPM at phase transitions. Two major

approaches exist for identifying application phases: (i) timer-based (or periodic), which

involves periodically reading performance counters to identify computational bottleneck

regions (i.e., memory- or- CPU-bound), and (ii) event-based, which uses application code

instrumentation (which can be programmer-driven, parallel programming-driven, or
compiler-driven) to flag the entry into different code regions.

Figure 24: (a) Overview of the main PM components of modern HPC socs. (b) ControlPULP co-simulation

platform; (c) Extensions for modelling workload and SCMI Power Management interfaces

On-chip power controllers are usually 32-bit microcontrollers with optional general-purpose

or domain-specific modules, from efficient data-moving engines to microcode-driven

co-processors or programmable many-core accelerators (PMCAs) to accelerate the PM policy.

The LLC is subject to soft and hard real-time requirements, thus demanding streamlined

interrupt processing and context switch capabilities. Moreover, its I/O interface has to

sustain out-of-band communication through standard HW PMIs such as Power Management

Bus (PMBUS) and Adaptive Voltage Scaling Bus (AVSBUS).

The PM policy running on the on-chip power controller can be scheduled as a bare-metal FW

layer, or leverage a lightweight real-time OS (RTOS) (e.g., FreeRTOS), as in the open-source

ControlPULP IP used in the project. The latter is based on RISC-V parallel cores, and an

REGALE - 956560 67 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

associated cascade control PM FW. It supports the co-simulation of the design with power

and thermal simulators in Xilinx Zynq Ultrascale+ ZCU102 FPGA as reported in Figure 24 (b)).

PMI interface

Industry-standard FW layer: ACPI is an open standard framework that establishes an HW

register set (tables and definition blocks) to define power states. The primary intention is to

enable PM and system configuration without directly calling FW natively from the OS. ACPI

provides a set of PM services to a compliant OSPM implementation: (1) Low-Power Idle (LPI)

to handle power and clock gate regulators; (2) Device states; (3) collaborative processor

performance control (CPPC) for DVFS enforcement; (4) Power meters for capping limits. CPPC

allows the OSPM to express DVFS performance requirements to the LLC, whose FW makes a

final decision on the selected frequency and voltage based on all constraints.

The communication channel between userspace power management policies and on-chip

power controller ones is formally defined as a platform communication channel (PCC) by

ACPI; it can be a generic mailbox mechanism, or rely on fixed functional hardware (FFH), i.e.,

ACPI registers hardwired for specific use.

OS-agnostic FW layer: Most industry vendors rely on proprietary interfaces between HLC and

LLC. Intel uses model-specific registers (MSRs) mapped as ACPI’s FFH to tune PEs’

performance. Performance requests are handled through the intel_pstate governor in Linux,

while capping is enforced through the Running Average Power Limit (RAPL) framework. In

IBM systems, the OpenPower abstraction layer (OPAL) framework relies on special purpose

registers (SPRs) and a shared memory region in the On-Chip Controller (OCC) to interact with

the LLC. In the RISC-V ecosystem, the recent efforts in designing HPC systems have led to

specific ACPI extensions and PMIs, known as RPMI. Arm does not rely on FFHs, which limits

flexibility and proposes the SCMI protocol to handle power management performance,

monitoring, and low power regulation requests. SCMI involves an interface channel for

secure and non-secure communication between an agent, e.g., a PE, and a platform, i.e., the

on-chip controller. The platform receives and interprets the messages in a shared memory

area (mailbox unit) and responds according to a specific protocol. The design of the SCMI

protocol reflects the industry trend of delegating power and performance to a dedicated

subsystem and provides a flexible abstraction that is platform-agnostic.

To integrate the REGALE node-manager and job-manager with the ControlPULP IP we

extended the FPGA emulation platform with the SCMI HW, SW and FW support. Making it

possible for the application processors in the PS part of the FPGA to exchange SCMI power

management requests to the Linux operating system toward the ControlPULP HW emulated

on-chip power controller synthetized in the PL part of the FPGA. This allowed us to measure

and evaluate the cost of the SCMI PMI in terms of power management efficiency loss when

serving the request coming from userspace-level control policies (job manager and node

REGALE - 956560 68 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

manager). To ease the notation will refer to these as High-Level Controller - HLC, and to

on-chip power controllers as low-level controllers - LLC. For this aim, we created in the

system two dummy job managers who were selecting the optimal energy-efficiency

operating point following the workload phases. One controller was based on periodic

performance monitoring of the application properties through performance counters

(timer-based), and the other was based on instrumentation of the workload phases

(event-based).

We observed that the default power control policy implemented in ControlPULP due to its

feedback nature was introducing a delay in applying the requested set-point causing a loss of

efficiency. We proposed an optimized policy which bypasses the power-capping and

thermal-capping optimal internally computed operating point if the requested one has lower

power. This optimized firmware leads to an application performance improvement up to 3%.

Moreover, we measured a degradation in the performance of the power management

algorithm of 0.2% when the SCMI communication is used w.r.t. an ideal zero-latency PMI

interface based on shared memory.

Figure 24 (c) shows the block diagram of the proposed HIL emulation framework to model

and evaluate the PMI in the end-to-end PM HW/SW stack. The framework consists at the

lower layer by the RTL implementation of ControlPULP emulated in the Programmable Logic

(PL) of the FPGA-SoC to which we added a SCMI mailbox unit (SCMI mailbox unit (SCMI-MU))

to provide the HW transport for SCMI protocol. At the same time, the Linux OS image

running on the Processing System (PS) has been modified to propagate OSPM requests to the

ControlPULP LLC via the SCMI-MU. Additionally, a shared memory interface is in place to

emulate PM virtual sensors and actuators. Indeed the simulated plant (at the top of Figure

24 (c)) provides a thermal, power, performance, and monitoring framework to simulate the

power consumption and temperature of a high-end CPU. The plant simulation is

programmed in C and runs on the PS’s Arm A53 cores.

SCMI Mailbox:

We implement a hardware mailbox unit called SCMI-MU according to Arm’s SCMI standard.

In the following, we compare the two.

Arm MHU-v1: In an Arm HPC processor, a communication channel is typically implemented

using two HW units: the shared memory and the message handling unit (MHU). The former

provides a shared storage for SCMI message data. The latter handles channel arbitration

through (i) an interrupt generation logic, which notifies the platform about new messages

dispatched to the shared memory, and (ii) a set of registers storing the unique identifier of

the transaction associated with the message (the LLC is agent-aware). The format for

messages encoded in the MHU’s channel registers is user-programmable.

SCMI-MU: We designed the SCMI-MU to be compatible with high-level SCMI drivers in the

Linux kernel. As shown in Figure 24, the SCMI mailbox is accessible from both the PS and the

LLC through a 32-bit AXI Lite frontend.

REGALE - 956560 69 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The shared memory implements 33 32-bit registers for SCMI compliance and serves as

shared spaces for storing host messages from multiple agents. The interrupt generation logic

comprises two 32-bit registers, named doorbell and completion, respectively, and an

interrupt generation logic. Both registers generate a level-sensitive, HW interrupt to the

LLC/HLC when set, and gate the interrupt when cleared. On the LLC side, the doorbell

interrupts are routed through a RISC-V Core-Local Interrupt Controller (CLIC), which handles

ControlPULP hardware interrupts and improves real-time performance. On the HLC side, the

completion interrupts are routed through the Arm GIC-V2. When a message is fetched by the

LLC, the MHU register is cleared to not block subsequent writes. This mechanism allows the

sender to know if the message has been fetched by the receiver.

Linux SCMI SW stack:

As mentioned earlier, application-level PM policies (HLC) require the cpufreq_userspace

governor. In SCMI this is composed of the following main routines: cpufreq, scmi_cpufreq,

perf, mailbox, arm_scmi driver, and arm_mhu. The HLC writes the new operating point value

for core i in an interface file in the system virtual filesystem in Linux which automatically calls

the cpufreq driver methods. We use release v4.19.0 of the Linux kernel, compatible with Arm

MHU-v1, where the cpufreq and scmi_cpufreq are tightly coupled for message transmission

and reception. The scmi_cpufreq driver directly calls perf, which prepares an SCMI message

through the perf_level set command. The drivers in the bottom layers transmit the message

through the SCMI-MU.

Once the message is sent, ControlPULP processes the request, applies the target frequencies

to the cores, and triggers the completion signal. On the OSPM, such signal is mapped to an

interrupt service routine (ISR) handled by the arm_mhu driver, which reads the transaction

identifier, decodes the message in shared memory, and resets the completion register.

REGALE - 956560 70 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 25: Sequence of function calls within the Linux CPUFreq stack, for a perf_level_set SCMI request.

Figure 25 reports the call stack for SCMI and it is split into three parts: the transmission

window T1 on the agent side, ranges from store_scaling_setspeed() in cpufreq to message

delivery in the shared memory by arm_mhu; the decode window T2 on both platform and

agent sides, ranges from the doorbell-triggered ISR hook in the LLC to the

completion-triggered ISR hook in the HLC via arm_mhu; the reception window T3 on the

agent side, covers function calls until return of cpufreq.

SCMI FW module:

The SCMI FW module executes on the ControlPULP LLC. Its primary purpose is to enable the

exchange of SCMI messages between the governor, running on the HLC, and the power

policy FW executing on the LLC.

It must be noted that SCMI channel management operations are subject to timing

constraints imposed by the Linux SCMI drivers through software timers tasked with detecting

channel congestion. Upon expiration, the ongoing transaction may be cancelled. The native

FreeRTOS-based SW stack on top of the LLC is leveraged to ensure fast platform-agent

reaction time in compliance with these timing constraints.

The FW comprises two sections: (1) a low-level, SCMI-MU HW management layer, and (2) a

high-level decoding layer for the governor’s command. The management layer contains

methods to access the SCMI-MU shared memory, as well as populating its registers related to

interrupt generation. The decoding layer, on the other hand, is embedded within Con-

trolPULP’s power control firmware (PCF) as FreeRTOS task, called decoding task, which

REGALE - 956560 71 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

leverages the methods exposed by the hardware management layer to access messages

from/to the SCMI-MU. After decoding the values of the header and payload fields of the

message, the FW maps the SCMI message into a command. The SCMI specification supports

a wide range of message types; the firmware implemented in this work focuses on perf level

set commands, to handle new frequency setpoint values for a given performance domain,

common to all cores in our simulation setup.

On a new message arrival, a doorbell interrupt signal triggers an ISR, which saves the

message waiting for the decoding task to execute. The latter is queued for execution until

scheduled by FreeRTOS, having lower priority compared to the power and thermal policy

tasks. The decoding task reads the transaction identifier from the doorbell register, and the

rest of the message from the shared memory. It then clears the doorbell register to signal

message reception to the sender and performs decoding. After decoding, it populates the

shared-memory with the response and rings the completion interrupt.

ControlPULP PM policy optimized for latency

In REGALE we propose to extend the ControlPULP PM policy to be optimized for latency. The

default ControlPULP PM policy (PCF) relies on a periodic control task executing every 500μs

(configured to account for ms-scale temperature time constant and μs scale PLL locking

time); it executes a cascade of a model-based power capping algorithm and PID thermal

capping algorithm. The SCMI new frequency setting is read by the algorithm during the

500μs period to compute the novel power management settings (PLL frequencies and

Voltage level) which is then applied in the next task period. This induces, as best case, two

period latency between a receipt of an incoming SCMI message and a change of the HW

power management interface. This is intrinsic of the control scheme stability and thermal

and power capping capabilities. We propose to bypass this latency and directly apply the

new SCMI setting if the new operating point has a lower frequency, and yet power, w.r.t. the

PCF’s computed one for the previous two cycles. This allows to reduce the latency in case of

HLC requests which reduces the actual power consumption. We named this policy LLC

Optimized.

To evaluate the effect of the proposed sophistication we evaluate its behaviour under two

different HLC configurations. A timer-driven one and an event-driven one. The first reads the

workload properties with a constant period and assumes with a last-value prediction that in

the next period, the workload will share the same properties. Based on that, it computes the

optimal operating point for energy and performance and requests the change of operating

point through the PMI (SCMI or ideal zero-latency shared memory) - this would be the case

of a node manager. The latter one assumes perfect phase instrumentation and selects the

optimal operating point using an oracle at phase transition - this would be the case of a job

manager like COUNTDOWN or EARlib. This HLC policy emulates the best-case scenario for

instrumentation-based power management policies.

REGALE - 956560 72 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 26: Distribution of Command Delay over two different HLC configurations, for cores controlled through

shared memory and SCMI Mailbox interfaces.

Figure 26 reports the command delay (CD) distribution measured as the time elapsed from a

workload phase front to an actual change in the applied frequency. We perform three tests:

(i) with periodic HLC, (ii) with an event-based HLC, and (iii) with the proposed LLC optimized

FW. The average CD for (i) is 2.20ms for SCMI communication and 1.94ms for the shared

memory case. Test (ii) results in an average CD of 1.35ms with SCMI communication and

1.16ms for the shared memory case, showing an improvement thanks to the responsiveness

of the event-driven HLC. Finally, in the proposed optimized LLC FW (iii) the average CD

reduces to 0.77ms.

Figure 27: Distribution of Command Delay over two different HLC configurations, for cores controlled through

shared memory and SCMI Mailbox interfaces.

Finally Figure 27 reports the control performance for the same three tests measured as the

application speedup w.r.t. HLC periodic and baseline ideal shared memory PMI. From it, we

can notice that the event-driven HLC (ii) leads to a speed-up in the application (+2.75%)

which further increases with the proposed LLC-optimized FW (+3,18%). Moreover, the

REGALE - 956560 73 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

command delay introduced by a real PMI, the SCMI protocol, leads to a marginal reduction

of the attained speedup (from -0.02% to -0.3%). These application speedups are due to

better energy efficiency which translates to higher frequencies selected by the LLC FW while

enforcing thermal and power caps.

Machine Learning Model for Thermal Anomaly Detection42

To predict thermal hazard anomalies, it is necessary to define a labeling approach and NN

model that have the potential to predict future thermal anomalies. To do this, it is necessary

to first analyze thermal hazard periods to identify relevant patterns and characteristics.

Based on this study, we then define a rule-based statistical method to classify the monitoring

signals collected from the nodes' sensors into binary categories. Next, we apply this method

to generate ground-truth labels and create a dataset for training the ML model. Therefore,

we propose a framework for thermal hazard prediction that consists of various capabilities

and subcomponents to create a complete pipeline. This pipeline starts with collecting or

extracting monitoring data, followed by data preprocessing, implementing a machine

learning (ML) model, making inferences, publishing the inference results, and more. The

framework also addresses the training requirements of the ML model and handles

imbalanced datasets, which are common when anomalies are rare. To build this framework,

we compare different machine learning and deep learning models, such as Last Value

Prediction, Linear SVM, RBF-SVM, SGD Classifier, LSTM, and TCN, which serve as the "brain"

of the framework. Additionally, we studied different data structures to preserve the

spatio-temporal information of the monitoring signals.

Thermal Hazard Analysis

To begin our thermal hazards analysis, we studied the temperature distribution of the nodes

during two reported thermal hazards as identified by human experts. We then compared this

distribution to the temperature distribution during non-thermal-hazard periods. For

example, Figure 28 shows the temperature distributions of the inlet (top) and outlet

(bottom) for one node in three cases: non-hazard, hazard on 28th June, and hazard on 1st

July. Comparing the two figures, we can observe that the inlet temperature distributions for

non-hazard and hazards are distinguishable, but this is not the case for the outlet

temperature distributions. We also assessed this property for other randomly selected nodes

and different monitoring signals. Figure 28-top reports with a dashed black line the quantile

0.95 of the node’s non-hazard distribution. As it is visible from the figure, this quantile (0.95)

can be used as a threshold to separate the non-hazard and hazard node temperatures. Based

on this analysis, we concluded that the quantile 0.95 of the inlet temperature of each

42 Seyedkazemi Ardebili, Mohsen, Andrea Acquaviva, Luca Benini, and Andrea Bartolini. "HazardNet: A thermal
hazard prediction framework for datacenters." Future Generation Computer Systems (2024).

REGALE - 956560 74 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

compute node during non-hazard periods is a good parameter to discriminate between

hazard and non-hazard. This approach can be expanded to include other monitoring signals.

However, in this report, we have only focused on this specific metric.

Figure 28: Temperature Distributions for One Compute Node in CINECA's HPC Cluster, June-July 2019.

Thermal (Hazard) Anomaly Labelling Method

We propose a rule-based statistical method to label (detect) thermal anomalies (hazards) by

expanding the statistical analysis of thermal hazards.

Node-threshold (NT)

Based on the characterization of thermal hazards described, we introduce the

node-threshold to assign a binary thermal hazard label for a specific compute node and

timestamp. (if a node features a thermal hazard? True: If a node in a timestamp experiences

a temperature greater than the node threshold, False: otherwise). We defined the

node-threshold individually for each compute node as the 0.95 quantile of its temperature

distribution over the entire dataset (one year). Therefore, different nodes can have different

node-threshold. Figure 29(a) summarizes a 6-hour time window (TW) of the inlet

temperature dataset. We applied the node-threshold to assign to each (node, time) cell a

True/False label indicating sample-by-sample thermal trouble, as shown in Figure 29(b). We

chose TW = 6 hours which is equal to the prediction horizon.

REGALE - 956560 75 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Spatio-temporal-impact-threshold (STIT)

To assign hazard/non-hazard labels to Time Windows (TW)s (Figure 29(a)), we introduce a

spatio-temporal-impact-threshold that takes into account the spatial and temporal continuity

of thermal hazards. A TW with 3312 nodes and a duration of 6 hours, with a sample rate of 1

sample per minute, would have a total of 1192320 true/false values (as shown in Figure

29(b)). The spatio-temporal-impact-threshold determines the minimum percentage of ”true”

values required within the TW to classify the datacenter as being in a thermal hazard. A

higher threshold will result in the selection of thermal hazards that are more widespread, i.e.

that involve more nodes for a longer period of time. The spatio-temporal-impact-threshold is

a general answer to the following question. How much thermal hazard spread in time and

different nodes in the datacenter (in a TW)?

It is essential to note that although this statistical labeling approach is based on real

information extracted from the reported thermal hazard distribution, this statistical labeling

approach is artificial and must be confirmed by comparing it with the reported thermal

hazards. After reviewing the results of the statistical labeling process using human-identified

thermal hazards, we discovered that by setting the spatio-temporal impact threshold at 5%,

our statistical approach successfully identifies the reported thermal hazards. Additionally, it

detects additional thermal hazards that were overlooked by the human expert. These are

conditions in which the compute nodes’ temperatures have drastically increased without

causing immediate damage but still potentially damaging the nodes. Our statistical labeling

approach can capture these events which are unnoticed by humans. If we increase the

spatio-temporal-impact-threshold (STIT) quorum to 25%, the statistical labeling approach

could only detect the very severe hazard, thus making it too restrictive in identifying

abnormal states. For the selected STIT of 5%, the datacenter is labeled as being in thermal

hazard for 19.5% of the time (we checked for one year). When we raise the threshold to 15%,

the thermal hazard category reduces to 3.8%, while still detecting all hazards. This quantifies

the rarity of extensive thermal hazards compared to narrow ones. Both of these thresholds

can correctly capture real thermal hazards, but with different levels of sensitivity. Since, in

the production scenario, there will be an operator/software that will react to the alarm, we

prefer to train the model to be skewed toward higher sensitivity (5% threshold). Still, the

operator/software can change this threshold with conditions (See Table 8).

REGALE - 956560 76 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 29: Time Windowing and Labeling.

Table 8: Thermal Hazard Percentage.

Machine Learning Tools

To determine the most appropriate ML/DL model for the thermal hazard prediction

framework, we evaluated different classical ML and DL tools in predicting thermal hazards in

CINECA’s HCP system.

Classical ML-Learning Tools:

0. Last Value Predictor (LVP): a minimum baseline for any time-series task; the prediction ŷ is

simply a copy of the present observation ytrue : ŷ(t + 6H) = ytrue (t), with 6 hours (6H)

prediction horizon.

1. Support Vector Machine (SVM): SVM with either linear or Radial Basis Function (RBF)

kernels. SVMs produce decision boundaries with margins to improve generalization.

2. Stochastic Gradient Descent (SGD)-classifier: linear SVM trained with SGD instead of

convex optimization, enabling larger train set size. SVMs and SGD-classifier were

implemented in Scikit-learn 0.23.

Deep Learning Methods

1. Long Short-Term Memory (LSTM): a type of Recurrent Neural Network (RNN) that can

learn long-term dependencies. Our LSTM has 2 layers of hidden and output size 16, followed

by a dense layer. The LSTM model was implemented in Keras 2.4.

2. Temporal Convolutional Network (TCN): The common TCN is a sequence to a sequence

modeling tool. However, our framework requires a classification tool, so we modified the

TCN to suit our needs by adding a classification block at the end of the model. Figure 30(a)

REGALE - 956560 77 12.04.2024

Spatio-Temporal-Impact-Threshold

5% 10% 15%

Node-threshold 95% 19.5% 8.0% 3.8%

D2.3 Final integration of sophisticated policies in the REGALE prototype

depicts the proposed TCN model. We propose the different architectures of the TCN model

by modifying the convolutional layers and adjusting the input data structure (see Figure 30(a)

- 30(e)). While keeping the model’s size appropriate, using complex models will allow for

expanding the number of input features. Additionally, a more complex architecture is

expected to better learn the complex spatio-temporal relations of the monitoring signals.

The input data structure also plays a crucial role in maintaining the spatio-temporal relations

of the monitoring signals. By using complex TCN architectures, it becomes possible to use

more efficient input data structures that still retain the spatio-temporal information of the

monitoring signals.

We evaluated the proposed framework in two different scenarios. In the first scenario, we

evaluated the model’s performance over the entire study period, resulting in an F1-score of

0.98. In the second scenario, we enforced causality in the collected data by training and

testing the model in two disjunct and consecutive periods, resulting in an F1-score of 0.87.

When integrated with the Machine Learning Operations framework described above

”Integration of ML Models in Production System” the data extraction time depends on the

data points needed to compute the input feature of the model and accounts for 34s which

lead to inference latency of ~37s which is negligible with respect of the prediction horizon of

the model (6 hour).

REGALE - 956560 78 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 30: TCN Model’s Architecture and Input Data Structures for Different Types of Convolutional Layers
(1DConv., 2DConv., and 3DConv.).

REGALE - 956560 79 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

4 Under Power Constraints
4.1 System Level Power-Capping with OAR

4.1.1 Related Work

In this subsection, we briefly present recent research trends and related works relevant to

power/energy-aware HPC resource monitoring and management. We invite the reader to

consult Maiterth et al43. and Kocot et al44. for a more detailed survey on the subject.

Researchers have been proposing energy/power aware scheduling methods for HPC

platforms by employing a large variety of methods, ranging from integer programming45 to

heuristics46,47, and Machine Learning48. Most of these works calculate the power

consumption of an application relying on the Thermal Design Power (TDP) of the

processors/accelerators, and a mix of the application’s processing time and resource

utilization.

Several works also use energy measurements from interfaces such as RAPL49,50, but in

aggregations such as average energy/power consumption. In contrast, our work relies on

real-measured data consisting of fine-grained time series of the power consumption of the

applications to show the efficiency of our method.

Few works rely on time-series data of the power consumption, and it is mainly exploited in

studies that analyze the behavior of the platforms51. This work is a step towards exploiting

power consumption time-series data for power-aware HPC resource management.

In summary, the majority of works present sophisticated methods for energy-aware resource

management. However, it is widely known that sophisticated methods hinders their

deployment in real-world production platforms52.

Furthermore, these sophisticated methods may require additional a priori characterizations

or predictions of the power consumption of the applications.

52 Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory and practice in parallel job scheduling. In: Job Scheduling
Strategies for Parallel Processing: IPPS’97 Processing Workshop Geneva, Switzerland, April 5, 1997 Proceedings 3. pp. 1–34. Springer (1997)

51 Patel, T., Wagenhäuser, A., Eibel, C., Hönig, T., Zeiser, T., Tiwari, D.: What does power consumption behavior of hpc jobs reveal?:
Demystifying, quantifying, and predicting power consumption characteristics. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 799–809. IEEE (2020)

50 Saurav, S.K., GL, G.P., Chauhan, M.: Adaptive power management for hpc applications. In: 2016 2nd International Conference on Green
High Performance Computing (ICGHPC). pp. 1–7. IEEE (2016)

49 Khan, N.K., et al.: Energy measurement and modeling in high performance computing with intel’s rapl (2018)

48 D’Amico, M., Gonzalez, J.C.: Energy hardware and workload aware job scheduling towards interconnected hpc environments. IEEE
Transactions on Parallel and Distributed Systems (2021)

47 Hu, Q., Sun, P., Yan, S., Wen, Y., Zhang, T.: Characterization and prediction of deep learning workloads in large-scale gpu datacenters. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 1–15 (2021)

46 Chasapis, D., Moretó, M., Schulz, M., Rountree, B., Valero, M., Casas, M.: Power efficient job scheduling by predicting the impact of
processor manufacturing variability. In: Proceedings of the ACM International Conference on Supercomputing. pp. 296–307 (2019)

45 Pierson, J.M., Baudic, G., Caux, S., Celik, B., Da Costa, G., Grange, L., Haddad, M., Lecuivre, J., Nicod, J.M., Philippe, L., Rehn-Sonigo, V.,
Roche, R., Rostirolla, G., Sayah, A., Stolf, P., Thi, M.T., Varnier, C.: Datazero: Datacenter with zero emission and robust management using
renewable energy. IEEE Access 7, 103209–103230 (2019). https://doi.org/10.1109/ACCESS.2019.2930368

44 Kocot, B., Czarnul, P., Proficz, J.: Energy-aware scheduling for high-performance computing systems: A survey. Energies 16(2), 890 (2023)

43 Maiterth, M., Koenig, G., Pedretti, K., Jana, S., Bates, N., Borghesi, A., Montoya, D., Bartolini, A., Puzovic, M.: Energy and power aware job
scheduling and resource management: Global survey—initial analysis. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). pp. 685–693. IEEE (2018)

REGALE - 956560 80 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Predicting the power consumption can be quite hard to achieve. For instance, in the case of

GPUs, some applications can result in high power consumption variability when running in

distinct GPUs of the same model and vendor.

Our work presented in this subsection is in the category of power capping for power-aware

resource management in power constrained platforms. Power capping consists in adjusting

the computing nodes to consume less power than its allowed maximum by employing, for

instance, Dynamic Voltage and Frequency Scaling (DVFS).

We distinguish ourselves from previous works in power capping because we rely on the

users’ engagement to run applications under power cap. Engaging users results in a simple

power-aware resource management method that does not need any a priori characterization

or prediction of the power consumption of the applications, making it easier to deploy in

production platforms. The principle is straightforward: we can comply with the power cap if

enough users volunteer to run their applications under slight levels of power cap. No need

for complex power-capping decision-making from the side of the platform.

4.1.2 Preliminary definitions

We consider an HPC platform as a computing cluster with computing nodes that are

connected by a certain interconnection topology. Each computing node has one or more

CPUs and also accelerators (e.g., GPUs). In the context of this paper, we consider the

accelerators as only GPUs. The computing clusters are homogeneous in the context of the

computing nodes. That is, all computing nodes have the same number and model of CPUs

and GPUs.

During the platform’s operation, several users submit applications, hereafter referred to as

jobs. To deal with the jobs’ submission and processing on the platform, we use OAR, a

management system called Resources and Jobs Management System (RJMS) that runs on the

platform. OAR is the main interaction point between the users and the HPC platform. Users

can submit applications to OAR at any point in time, and OAR has no ahead information

about which jobs will arrive. The literature refers to this job submission characteristic as

online job submission. We configure OAR to assign the processing order of the jobs in First

Come First Served (FCFS) order. FCFS is the baseline job queue ordering heuristic in the

popular backfilling scheduling algorithm.

An electricity provider powers the platform with electricity. We consider that there are

certain time periods where the electricity provider is not able to fully power the platform,

resulting therefore in power capped periods during the platform’s operation. In the

real-world, this cap can come from sources such as (i) general electricity grid overdemand

due to an external event, and (ii) temporary reduction of the renewable power capacity of

the electricity provider. The electricity provider informs the platform maintainers in advance

about when and how much the HPC platform will be power capped to accommodate the

peaks of demand.

REGALE - 956560 81 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

OAR is also responsible for managing the jobs that are currently running in the HPC platform.

Therefore, once a power capped period arrives, it is up to OAR to deploy measures to comply

with the power cap. We elaborate on these measures in the section below.

4.1.3 Proposed methodology

Methods to comply with a power cap

In production clusters such as Marconi100, the scheduling algorithm used is usually a variant

of FCFS, or EASY-bf. As such, in the need to set a power cap, production clusters can adopt a

variant of their preferred scheduling algorithm that would either kill jobs arbitrarily, or make

a reservation for machines to shut down, such that the maximum power draw of the

remaining machines is below the powercap. We investigate in this subsection two scheduling

algorithms:

FCFS_killer (Baseline): kills jobs until the power cap is reached, newest job first. Upon job

termination, OAR can shut down the computing nodes previously allocated by the killed job,

thus saving power. This method is arguably the easiest to be deployed in practice, but it can

be very intrusive, affecting the Quality of Service (QoS) of the platform, since FCFS_killer risks

losing all the computation that was being performed by the killed job. We decided to select

the newest job first in an attempt to reduce the wasted energy caused by killing.

FCFS_eco_mode (Our contribution): on the job submission, users may flag their jobs,

indicating that the job can be run in a slowed down state. We hereafter refer to this flagged

job as EcoJob. During the power-cap period, OAR looks for flagged jobs that are running, and

uses DVFS to proportionally slow down the nodes assigned to these flagged jobs, until the

power cap is reached. OAR slows down the assigned nodes up to a lower limit of 50% of the

maximum power of the node. If all possible nodes are slowed down to this limit and the

power cap is still not satisfied, a FCFS_killer routine starts, which will kill jobs until the power

cap is satisfied. Non-flagged jobs will be prioritized to be killed by the FCFS_killer routine.

There are 4 events that the schedulers need to react to in a power-capping setting.

FCFS_eco_mode reacts to these events as follows:

● set DVFS to the lowest mode kill jobs, non-EcoJobs first, newest first increase DVFS

until powercap is met

● set DVFS to the highest mode

● Liberate resources Reset corresponding machines’ DVFS state Execute jobs from

queue as long as they fit in power and resources

● Add to queue Execute jobs from queue as long as they fit in power and resources

The idea behind FCFS_eco_mode is to let the user decide to trade-off performance (i.e., let

their jobs run slower) to increase the chances that their jobs will not be killed.

FCFS_eco_mode tries to engage users as a front line measure to comply with the power cap,

potentially avoiding degrading the QoS with job kills. It is important to emphasize that this

REGALE - 956560 82 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

idea behind FCFS_eco_mode is agnostic for any kind of scheduling algorithm, since it

concerns the jobs that are already running.

To go beyond FCFS, we also investigated a modified implementation of EASY backfilling with

job power prediction. The difference with the standard EASY backfilling algorithm is that we

only backfill a job if its power consumption will not go beyond the power budget at any time

during its execution. Our focus with this modified implementation was not to react in real

time to the real power consumption at a fine grained level as we did in the rest of this

subsection, but to assess the precision of different power estimations for jobs and the power

consumption achieved during the execution, compared to the predicted available power.

Results on this are presented in Deliverable 1.4.

Understanding the effects of FCFS_killer and FCFS_eco_mode by experimenting them in

real-world platforms is risky, onerous, and time-consuming. We address this hindrance by

performing simulation experiments of operating an HPC platform. In the next section, we

present the details to achieve in this simulation.

Simulating a supercomputer under power cap

Data sources for simulation

It is a common practice from supercomputer maintainers to register information about the

operation of the platform, notably details about the jobs in the form of workload traces (e.g.,

number of requested processors, arrival time, run time). An example is the workload traces

present in the parallel workloads archive53. However, such traces do not contain information

about the power consumption of the computing nodes during the platform’s operation,

which hinders the task of simulating the workload traces taking into account the energy

consumption and power cap.

To overcome this hindrance, we exploit a recent dataset from the Marconi100

supercomputer. This dataset not only contains the aforementioned information about the

jobs, but it also contains time-series data about the power consumed by the computing

nodes.

On top of the common data collection for job information in a Job Table, two plugins were

used to collect energy information, IPMI and Ganglia. The IPMI (Intelligent Platform

Management Interface) plugin serves as a data collection tool, retrieving information from

the Out-of-Band (OOB) management interface, specifically the Baseboard Management

Controller (BMC) of the computing nodes. The BMC is a hardware component embedded in

servers or cluster nodes that facilitates remote monitoring and management of the system.

The IPMI plugin gathers sensor data – notably the power consumption – from the BMC

installed in the nodes. The Ganglia plugin serves as an energy monitoring tool for most

components of each node. In particular, it recorded the energy use of each GPU for every

node, with a similar frequency to IPMI on the CPUs.

53 Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. Journal of Parallel and Distributed Computing
74(10), 2967–2982 (2014)

REGALE - 956560 83 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

To establish at which points in time the HPC platform will be power capped, we considered a

use-case from the available electricity demand data from RTE (Réseau de Transport

d’Electricité). RTE’s data gives us real-time data and history on the electricity demands in

France. With this data we can observe regular daily peaks around 6PM to 8PM. Therefore, in

our use-case we suppose that the power cap periods happen every day between 6PM and

8PM.

Preparing data for simulations

By crossing the timestamp information about the start/end time of the jobs (Job Table data)

and the time-series data of the computing nodes’ power consumption (IPMI Data and

Ganglia Data), we can extract time-series data of the power consumption of the jobs. Figure

31 illustrates a few examples of the extracted jobs’ power consumption data. From this

per-job power consumption data, we extract the power consumed by the CPUs and GPUs

during the jobs’ execution as a time-series data, sampled once every 20 seconds.

Figure 31: Examples illustrating the power consumption profiles of nodes of two jobs, one job per graph,

obtained from the Marconi100 dataset. Each job is a multi-node application, i.e., four nodes in the top graph

and eight nodes in the bottom graph.

Those power consumption and processor utilization time series are then used in simulation.

As such they allow us to simulate DVFS in a non-trivial fashion. The jobs are more than the

simplistic rectangular job of constant resource use, and the machines have a more realistic

behaviour thanks to the non-linearity of their model.

After this conversion, the jobs are now modeled as a sequence of amounts of computing to

be processed for every 20 seconds. This new modeling of the jobs constitutes a more

fine-grained computing profile of jobs, which gives us flexibility to simulate the DVFS impact

in the jobs in precise time windows during the jobs’ execution, and therefore to simulate the

REGALE - 956560 84 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

effects of a power cap on the jobs. The power state employed for task execution is

contingent upon its inherent characteristics. Tasks characterized by significant input/output

(I/O) operations exhibit differing power state requirements compared to those involving

intensive numerical computations. Consequently, the execution time of I/O-bound tasks

experiences less pronounced sensitivity to reduced clock frequencies, in contrast to

computationally intensive tasks.

Configuring the simulations

We use Batsim for all our simulations. As a simulator, Batsim is able to modulate parameters

such as frequency and power during simulation, mimicking a DVFS behavior. Batsim takes as

inputs a description of the targeted platform, a workload and a scheduler process.

The platform has been made to resemble Marconi100. As such, it has 5 batsim computing

nodes, 1 representing the CPUs and 4 representing the GPUs, for each real Marconi100

nodes. The lack of publicly available studies on Marconi100 components and the inherent

limitations of production environments in revealing job details necessitate assumptions for

converting Marconi100 traces to a batsim workload. As we lack most of the specifics of each

job, we decided to ignore communications, and focus only on computations. Fortunately,

analysis by Zacharov et al. enables direct conversion of power consumption to GFlop/s for

GPUs. However, no such straightforward method exists for CPUs. Therefore, we scaled a CPU

with known DVFS power consumption to match the idle and maximum power of Marconi100

CPUs. This approach yields a batsim platform emulating Marconi100, featuring an

approximation of DVFS for both CPUs and GPUs.

In our scenario, we imagine that the electricity provider imposes a power cap on the

platform at specific times. This power cap is given as dates in a configuration file, specifying

for each change the time and the new power cap. This power cap information is then used

by the scheduler to place, slow or kill jobs when needed.

We exploit Batsim’s composed jobs representation to use the calculated computing profile

time-series data as workload inputs for the job submission into the simulation. To fairly

compare between all the schedulers and parameters, we dynamically submitted jobs to the

platform to simulate users behavior for a set amount of time (10 days in our experiments).

Submitting jobs dynamically instead of replaying a static workload with fixed submission

times is important, as it allows us to regulate the job queue, preventing some algorithms

from having the unfair advantage of being able to select from a large pool of jobs simply

because they mismanaged the beginning of the schedule and created a large backlog.

Additionally, comparisons between different power cap settings would yield limited insights

if the workload remained static across all scenarios. Replaying the same job submissions

under varying power caps would primarily reflect the available energy, rather than provide

meaningful differentiation based on the evaluated parameters. Results are fully detailed in

the evaluation deliverable.

REGALE - 956560 85 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

4.2 Application level Power-Capping with BEO

Most future ExaScale supercomputing centres, not to say all, will heavily depend on power

capping functionalities. Indeed, with the rising energy costs and the threat of frequent

energy shortages, the power consumption of exaflopic supercomputers (22.7 MW for

Frontier54) makes it nearly impossible to operate them at their peak levels of performance on

a daily basis.

Thus, having the possibility to limit the power consumption of some of the components of

HPC systems, for instance by enforcing power caps for both processors and accelerators, is

becoming a must-have. However, enforcing a power cap on a computing component has a

significant impact on the level of performance it exhibits: the lower the power cap in Watts

(and hence, the more constraining the power cap), the greater the reduction of its

computing power. Yet, the main goal of supercomputing centres is to reach the highest job

throughput possible, which is at odds with enforcing power capping since it may induce

severe performance degradations. That is why several efforts have emerged, notably from

the academic world (for instance GEOPM55 and PShifter56), to make power capping smarter

and reduce the performance penalty it may entail.

At the beginning of the REGALE project, Bull Energy Optimizer (BEO) implemented the

enforcement of basic power capping on the compute nodes manufactured by Atos/Eviden,

and offered several additional features revolving around this functionality, notably including:

● The possibility to create collections of power capping rules which can later be

activated or deactivated;

● The possibility to give a power budget for a group of components, which is then

automatically translated to a set of individual capping rules for the components, with

a fair distribution of the power budget between the latter (i.e. a percentage of their

nominal power consumption);

● For a subset of equipment, an experimental determination of the effective lowest

power cap, that is to say the strongest power constraint which still allows the capped

component to operate. Indeed, some technically achievable values of power capping

can make the target component unresponsive.

However, EO did not offer any mechanism to mitigate the potential performance degradation

of the execution of an HPC application induced by the enforcement of a power cap.

That is why we designed a power capping mechanism, called “Application-Aware Power

Capping” (AAPC) to specifically address this issue.

56 N. Gholkar et. al., PShifter: feedback-based dynamic power shifting within HPC jobs for performance. In
Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing
(HPDC '18), 2018.

55 J. Eastep et. al., Global Extensible Open Power Manager: A Vehicle for HPC Community Collaboration on
Co-Designed Energy Management Solutions. In Proceedings of the 32nd ISC High Performance Conference,
2017

54 TOP500 system page for Frontier: https://www.top500.org/system/180047/

REGALE - 956560 86 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

The remainder of this section presents the latter mechanism in depth, starting from an

overview of its architecture and of the hardware and software ecosystems in which it

integrates. It also contains the description and specification of all the algorithmic elements

required to implement the AAPC mechanism.

Rationale of AAPC

To begin with, let’s specify the use case to be addressed by the Application-Aware Power

Capping (AAPC) mechanism. In a few words, it is based on the following empirical

observation: HPC applications exhibit a wide range of workloads, which all have different

sensibilities to power capping regarding performance. Indeed, on the one hand, some

applications/use-case pairs, for instance NEMO TOP/PISCES solver applied to GYRE57, tend to

be heavily memory-bound. As a consequence, they do not constantly require the computing

cores to consume their whole nominal power budgets to execute the workload associated

with the application. Thus, when considering the average behaviour of the application, the

nodes which execute it can be constrained by a power cap with only moderate impact on the

performance of the application. On the other hand, the execution of applications which are

much more compute-bound, such as HPL58, highly and almost permanently stresses the

computing cores. As a result, decreasing the raw computational power exhibited by the

nodes, for instance by enforcing a power cap on them, induces a significant performance

degradation. That is why compute-bound applications tend to be greatly sensitive to power

capping.

Based on those experimental observations, the rationale associated with the AAPC

mechanism consists in leveraging knowledge about the applications executed on a partition

of compute nodes at a given time to dynamically redistribute the power budgets allocated to

the jobs. The goal is to favour compute-bound jobs so as to increase the job throughput of

the considered partition, when compared to the standard “Fair Sharing Power Capping”

(FSPC) strategy, which is described in depth later on. Indeed, by trying not to

power-constraint the nodes executing compute-bound jobs, heavy performance

degradations for the associated applications could be avoided, which should tend to increase

the job throughput for the considered partition. On the contrary, the shift of power budget

from nodes allocated to memory-bound jobs to nodes allocated to compute-bound jobs

should tend to increase the performance degradations for the applications associated with

the former jobs. This will translate to a decrease of the job throughput for the considered

partition. However, as explained beforehand, the avoided performance degradation for

compute-bound jobs should positively counterbalance the induced performance degradation

for memory-bound jobs. Hence, on average, at the scale of a power-constrained partition of

nodes, the job throughput should be increased by the AAPC mechanism when compared to

the FSPC strategy.

58 HPL home webpage: https://netlib.org/benchmark/hpl/

57 NEMO home webpage: https://www.nemo-ocean.eu/

REGALE - 956560 87 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Integration of AAPC in an HPC software architecture

An overview of the software architecture associated with the implementation of the AAPC

mechanism, and of how it integrates in the management stack of a supercomputer is

presented by Figure 32. At the heart of the AAPC mechanism lie two main components,

which interactions are described by the sequence diagram presented by Figure 33:

● An AAPC extension plugin for the Resource and Job Management System (RJMS);

● An AAPC module for Bull Energy Optimizer (BEO).

Figure 32: Overview of the architecture of the Application-Aware Power Capping (AAPC) mechanism, and of its
integration in the management software stack of a supercomputer.

The role of the former is to notify the latter of two kinds of events, namely the start and the

termination of jobs. The notifications are accompanied with several information about the

concerned job: its name and ID, the list of nodes allocated to the job, and the tag of the

application associated with the job (more details about the tags later on). The AAPC module

for EO can thus build and maintain an internal representation of the state of the partition of

compute nodes it manages regarding power capping. Incidentally, the power budget for the

REGALE - 956560 88 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

aforementioned partition is specified by the administrator of the supercomputer and is used

as input by the AAPC module for EO. Thanks to those pieces of information, it is possible for

the AAPC module for EO to compute a sharing of the power budget between the nodes, and

to update it at each job start or termination.

Figure 33: Sequence diagram describing the interaction between the Resource and Job Management System
(RJMS), and the Application-Aware Power Capping (AAPC) module of Energy Optimizer (EO).

Using the features implemented by the core engine of BEO, it is then possible to dynamically

create, update and enforce power capping rules on the compute nodes. It should also be

noted that in case of deactivation of the AAPC mechanism, the site-specific default power

capping rules should be enforced again.

REGALE - 956560 89 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Algorithmic elements about AAPC

This third subsection presents a subset of algorithmic elements related to the design of the

AAPC mechanism, starting with the specification of a prerequisite regarding the power

budget allocated to the managed partition of compute nodes. Then, a focus will be

performed on application tags, and some elements revolving around it. Finally, the algorithm

underlying the AAPC mechanism will be detailed.

Prerequisite: minimum required power budget

Application profiles and tags

Let’s define what application tags are. In a few words, as explained beforehand, HPC

applications exhibit a wide range of workloads which can be classified according to several

different taxonomies. The one used in the context of this work about the AAPC mechanism

defines three categories of applications:

● COMPUTE tag: The application is mainly compute-bound, and hence its performance

tends to be heavily degraded under power cap;

● MEMORY tag: The application is mainly memory-bound, and hence its performance

tends to be lowly degraded under power cap;

● MIXED tag: The application exhibits several interlaced behaviours, and hence the

impact of a power cap on its performance tends to be moderate on average.

From the point of view of the AAPC mechanism, the tag associated with an HPC application

defines a soft relative lower bound on the power constraint to be applied to a node

executing the latter.

Relative, since the associated power cap is defined as a percentage of the nominal power

consumption of the node. Soft, because the AAPC mechanism tries to find a sharing of the

power budget allocated to the partition which makes it possible for each individual power

cap enforced on the compute nodes to be compliant with the tags associated with the jobs

they execute, but it can set lower power constraints if such a sharing does not exist. On top

of that, the application tags are used to build a priority order regarding nodes to be

power-capped: nodes executing an application tagged as MEMORY should be

power-constrained before nodes executing an application tagged as COMPUTE. More details

about this last point in the next subsection.

At this stage of the design of AAPC, HPC users who submit jobs will be trusted to specify the

tag of the job. However, more refined techniques (e.g. AI/ML based) to infer the tag of a job

are being explored, and could be integrated in this architecture by interfacing with both the

RJMS and the AAPC module.

Description of the algorithm

To begin with, this subsection notably relies on schemas representing examples of power

budget sharing, so as to illustrate the description of the AAPC mechanism. These schemas

REGALE - 956560 90 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

are presented by Figure 34, Figure 35, Figure 36, and Figure 37. On the latter, each node is

represented by a square containing four pieces of information regarding the node:

● PWR: its average power consumption (in Watts) on a coarse time unit (e.g. 5

minutes);

● CAP: the power cap (in Watts) enforced on the node;

● MOP: its Minimal Operation Power (in Watts), which is the lowest value for a power

cap enforced on the node so that it should still operate properly;

● TDP: its Thermal Design Power (in Watts), which is the thermal power the cooling

system associated with the node should be able to dissipate so that the computing

components (e.g. CPUs, GPUs, ...) of the latter could operate at their nominal

performance level safely. TDP is quite commonly regarded as an estimation or an

accurate upper bound of the power consumption of computing components while

operating at their nominal performance level under load.

Figure 34: Example of the power budget sharing for a partition of idle compute nodes (in grey), according to the
Fair Sharing Power Capping (FSPC) strategy.

Additionally, idle nodes are in grey, active nodes in green if the power cap enforced on them

does not limit the power consumption associated with the execution of an application, and

in red if it does. In other words, nodes in green are active and the power caps enforced on

them does not significantly degrade the performance of the application they execute. On the

REGALE - 956560 91 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

contrary, the nodes in red are active and the power caps enforced on them limit their power

consumptions, which has a significant impact on the performance of the application they

execute. Finally, jobs are represented in blue if the associated applications are tagged as

memory-bound, in purple if they are tagged as compute-bound, and in orange if they are

tagged as exhibiting mixed behaviours.

Figure 35: Example of power budget sharing for a partition of nodes executing two jobs, according to the Fair
Sharing Power Capping (FSPC) strategy.

As stated earlier, the goal of the AAPC mechanism is to dynamically share the power budget

allocated to a partition of nodes according to the set of jobs executed on this partition so as

to increase the associated job throughput when compared to the Fair Sharing Power Capping

(FSPC) strategy. The latter consists in statically enforcing a power cap on each node of the

partition so that each node should be constrained to the same percentage of its nominal

power consumption. An example of power budget sharing according to the FSPC strategy is

represented by Figure 34. The power envelope allocated to the partition being equal to 75%

of the aggregated nominal power consumptions of the nodes, each node is capped to 75% of

its individual nominal power consumption.

That being said, the algorithm designed to implement the AAPC mechanism and make it a

smarter and more efficient power capping strategy when compared to FSPC can now be

presented. The first step of the update of the power capping rules by the AAPC mechanism

consists in checking that the power budget allocated to the managed partition abides by the

REGALE - 956560 92 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

prerequisite specified earlier, namely that it is sufficient for all the nodes of the partition to

consume their Minimal Operation Powers (MOPs).

Then, the first path of the AAPC mechanism corresponds to the case where the power

budget allocated to the managed partition is greater or equal to the sum of the aggregated

MOPs of the idle nodes and of the aggregated TDPs of the active nodes. In this case, all the

active nodes can operate at their nominal power consumption, without any degradation in

the performance of the executed applications.

Figure 36: Example of power budget sharing for a partition of nodes executing two jobs, according to the
Application-Aware Power Capping (AAPC) mechanism.

As illustrated by Figure 35 and Figure 36, this first path is already a significant advantage of

AAPC over FSPC when it comes to power capping strategies. Indeed, by shifting power

budget from idle nodes, which do not require it, to active nodes, the AAPC mechanism

makes it possible to avoid performance degradations due to power capping for

compute-bound jobs.

Regarding the main path of the AAPC mechanism, the first thing to say is that it consists in an

iterative refinement process of the individual power caps which takes into account the tags

of the executed applications. Since the power caps are iteratively refined, they are initialised

to the TDPs of the nodes. Then, each refinement step will potentially update those

intermediary power caps. When the refinement process terminates, power capping rules are

created by the AAPC module and enforced by BEO.

REGALE - 956560 93 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

As explained beforehand, the rationale of the AAPC mechanism is to power-constrain first

the nodes executing jobs which are less affected by power capping so as to let the more

power-hungry jobs run uncapped. On top of that, since the exhibited level of performance

for a given power cap can vary greatly as demonstrated by Pedretti et al.59, it seems well

advised to start by enforcing power constraints on jobs to which less nodes are allocated.

Indeed, due to the fact that they are executed on less nodes, the performance disparities

between the power capped nodes are less likely to induce additional performance

degradations during the synchronisation steps.

Let's now focus on the iterative refinement process implemented by the AAPC mechanism to

share the power envelope allocated to the partition it manages between the nodes

belonging to it. It can be outlined, sequentially, as follows:

(1) To begin with, each idle node is capped to its MOP, and each active node is temporarily

capped to its TDP. Since the refinement process is executed because the partition power

budget is not enough for all active nodes to consume their TDPs, it means that the total

power balance is less than 0. The goal of the refinement process is to cap the active nodes,

one job at a time, to make this power balance equal to 0.

(2) Then, iterate over all the jobs, one at a time and sequentially, to enforce power caps on

their allocated nodes. The aforementioned power caps are called “tag-related power caps”.

In short, it means that the power constraint enforced on a node allocated to a job is equal to

a percentage of its TDP, the percentage depending solely on the tag (e.g. 90% of TDP for

MIXED jobs). If, after power capping a job, the power balance is greater or equal to 0, then

the refinement process and hence the AAPC algorithm terminates (note that if the power

balance is strictly greater than 0, the excess power budget is fairly shared between the nodes

allocated to the lastly capped job).

(3) If, at the end of this first refinement iteration when all the jobs are tag-related power

capped, the power balance is still lesser than 0, a second and last refinement iteration is

performed. The same sorted list of jobs is parsed once more, one at a time and sequentially.

This time, the nodes allocated to the considered job are power constrained at their MOPs.

Similarly to what is done during the first iteration, the AAPC algorithm terminates when

power balance is greater or equal to 0, and the excess power budget is fairly shared between

the nodes allocated to the lastly capped job.

Note that since it is enforced that the global power budget makes it possible for all the nodes

of the partition to consume their MOPs at the same time, this second iteration of the

refinement process terminates, for sure. Once again, the rationale is to first and foremost

power constrain MEMORY-tagged jobs, as they tend to be less impacted by power capping

than COMPUTE-tagged jobs. This way, the job throughput at the scale of the partition should

be better with the AAPC mechanism than with the FSPC strategy.

59 K. Pedretti et al., "A Comparison of Power Management Mechanisms: P-States vs. Node-Level Power Cap
Control," 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2018.

REGALE - 956560 94 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Figure 37: Example of power budget sharing for a partition of nodes completely loaded by the execution of six
jobs, according to the Application-Aware Power Capping (AAPC) mechanism..

Figure 37 shows an example where the managed partition is fully loaded and needs to be

power-constrained: all its nodes are active and all of them cannot consume their TDPs at

once. At the end of the first iteration of the refinement process, pwr_left still was less than 0.

Thus, the nodes allocated to the two MEMORY-tagged jobs were power capped to their

respective MOPs. On top of that, the MIXED-tagged job N°6 had also to be

power-constrained further than the tag-related power cap. However, it was not compulsory

to cap its nodes to their MOPs and the excess power budget was fairly shared between the

latter. When compared to FSCP, the same number of nodes are impacted by performance

degradations due to power capping. However, here, out of the three impacted jobs, 2 are

MEMORY-tagged and 1 is MIXED-tagged (the latter being only slightly impacted). In

comparison, with FSCP, out of the three impacted jobs, 2 would be COMPUTE-tagged and 1

would be MIXED-tagged, and they would suffer significant performance degradations.

(4) Finally, the last step of the refinement process of the AAPC mechanism consists in

enforcing the individual power caps on the nodes belonging to the managed partition.

Conclusion and possible refinements

To conclude this section, a short digression on the temporality of the enforcement of a

power cap. Empirically, it was observed that a potentially significant delay could occur

between the time a power cap is set on a compute node, and the time it is effectively

REGALE - 956560 95 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

enforced (i.e. a limitation of the power consumption of the node is observable, for instance

thanks to BEO). This delay tends to increase with the load of the node. As a result, two

additional features might need to be implemented in the AAPC mechanism:

● Enforcing the power caps which are lesser than the previously enforced ones first, so

as to make room for the jobs that will be less constrained before granting them the

capability to consume more power;

● A power cap should be considered as enforced by the AAPC mechanism only after an

effective change regarding the frequency of the computing cores is observed.

Those two features could make the update of the power caps enforced on the nodes

belonging to the managed partition counter-productive if it is performed too frequently.

Thus, a minimal delay (e.g. 1 minute) between two updates might be necessary. However,

the callbacks hooked on the events associated with the start and termination of a job should

be executed normally, so as to maintain the internal representation of the state of the

partition of the AAPC mechanism.

REGALE - 956560 96 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

5 Combining Sophistications

To facilitate a deeper understanding of how the proposed sophistications detailed in the

previous sections and integrated in the REGALE components interact, we will now map them

to the overall REGALE architecture, as detailed in Section 3 of Deliverable 1.3 and provided

here for reference in Figure 38. This analysis will go from the top of the Figure to the bottom,

discussing the specific sophistications made to each module in the system and their

interactions, both within the module itself and with the entire software stack.

Figure 38: The final REGALE Architecture

Workflow Engine

Within this component, there are two sophistications aimed at improving the throughput,

related to the Elastic Resource Management presented in Subsection 2.3 and Data-aware

resource allocation presented in Subsection 2.4. While those sophistications were defined

and analyzed in two different workflow engines (respectively Ryax and Melissa), the core

concepts of the sophistications are applicable in both components. Similarly, concurrent

execution of workflows deployed with either workflow engine is also possible without

interference. Finally, there are no foreseeable conflicts with the other sophistications in the

rest of the software stack.

REGALE - 956560 97 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

System Manager

At the System Manager level, there are sophistications for all the sophistications objectives.

For performance and throughput, Co-scheduling for throughput and application coupling at

the node level was described in Subsection 2.1 and Co-scheduling within multicore

processing units was described in Subsection 2.2. While combining these two sophistications

on the same applications seem unrealistic due to the complexity required to manage

processes at this level of granularity, these can coexist on a cluster provided the resource

manager is able to manage both.

They are also compatible with the third sophistication which is Moldability for energy

efficiency presented in Subsection 3.1, as this sophistication is designed to choose the best

resource allocations for applications which can execute on a range of resources (as opposed

to a fixed predetermined number of resources). Since the co-scheduling at the node level

and this moldability approach were both integrated in OAR, their integration is

straightforward. Another sophistication is brought through BeBiDa elastic resource

management presented in subsection 2.3. This elasticity is brought without modifying the

typical usage of system managers such as OAR or Slurm hence keeping the compatibility with

all the other sophistications brought at this level.

Finally the last two sophistications are the System Level Power-Capping with OAR presented

in Subsection 4.1 and the Application level Power-Capping with BEO presented in Subsection

4.2. As these sophistications are aimed at managing the global power consumption of the

system by managing jobs power budgets, they are not conflicting with the other

sophistications, as long as there is a communication and agreement through the REGALE

common library on the power allocation to every job. They are however incompatible with

each other, as they are based on a completely different philosophy: the first one is based on

a volunteer scheme, where users can willingly allow the system power manager to reduce

their power consumption if needed and manages power allocation with simple greedy

heuristics, while the second is an automated approach where jobs characteristics are

analyzed on the fly during execution to adjust the power knobs depending on which job can

be executed at a lower power setting with the smallest penalty.

Job Manager and Node Manager

While these are two different components in our architecture, they are used jointly in both

related sophistications: Node level power controls (BDPO) presented in Subsection 3.4 and

Thermal and Power control on a node level (ControlPULP) presented in Subsection 3.5. These

sophistications are highly specific to the software used on the platform, and thus are not

directly compatible. They are also directly setting power consumption at the node level and

job level, and thus need to closely report to the system power manager to avoid conflicting

directives from the global sophistications and the more local sophistications explored here.

REGALE - 956560 98 12.04.2024

D2.3 Final integration of sophisticated policies in the REGALE prototype

Monitor

At the monitoring level, the sophistications are aimed at a better understanding of the

applications and power patterns, to help other components in their decision making. As

these two sophistications ML-based User-Labelling of the Job presented in Subsection 3.2

and Integration of ML Models in Production System presented in Subsection 3.3 are defined

as inputs to the other sophistications, they are naturally designed as compatible with most

sophistications. They are even compatible with each other, as the first one is analyzing high

level data and job activity logs, while the second one is directly integrated in the monitoring

system.

REGALE - 956560 99 12.04.2024

