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Executive Summary

This deliverable provides the evaluation results across all the activities of the REGALE
project, i.e. a) the REGALE prototypes (Integration Scenarios) and the REGALE library, b)
the REGALE pilots and c) the activities related to the study and incorporation of
sophistication in a state-of-the art supercomputing software stack. The evaluation process
presented here is largely targeted to assess the status of the Strategic Objectives set by the
project. To the Consortium’s view, these objectives have been met to a large extent as
validated by the experimental data provided in this document.
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1. Introduction

Throughout its implementation, REGALE dealt with two significant and inter-related
challenges for the effective utilization of large-scale supercomputing facilities, i.e. a) the
efficient use system resources translated to system throughput, application performance and
energy efficiency, and b) the efficient use of human resources translated to the easy,
automated and flexible use of supercomputing services.

To this end the project set a number of ambitious goals (i.e. Strategic Objectives, see Section
2) aligned with the aforementioned general vision. In this deliverable we present evaluation
results from several activities within the project that aim to ultimately validate whether the
objectives set by the project have been met. Since REGALE involves both quantitative and
qualitative objectives, this deliverable focuses on providing results for the quantitative ones
and provides a discussion (Section 8) on the qualitative ones.

The results presented are split in three categories aligned with the general activities and work
packages of the project. Section 3 details the project objectives and provides an overview on
their status at the completion of the project. In Section 4 and 5 we present results from the
REGALE prototypes and the REGALE library that mainly target energy efficiency. In Section
6 we present the results from the integration of the REGALE pilots with the relevant workflow
engines that target application performance and automation in the allocation of system
resources. In Section 7 we present results from the activities of REGALE that targeted the
injection of sophistication in modern HPC software stacks. Section 8 discusses briefly the
qualitative objectives of REGALE and Section 9 concludes the deliverable.

REGALE - 956560 6 01.05.2024
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2. Project Strategic Objectives

REGALE Strategic Objectives: REGALE envisions to meet the Strategic Objectives (SO)
presented below.

Strategic Objective 1 (SO1): Effective utilization of resources. This strategic objective
considers the large amount of resources available in exascale class machines and the
resource footprints of both traditional and emerging applications. The improvement in
resource utilization will indicatively translate to a combination of:

e SO01.1: Improved application performance. Better allocation of resources that
considers the exact application footprint, data requirements, and control and data
flows, will drastically improve performance for critical applications. This is especially
the case for the next generation, workflow-based applications where one of the major
problems is the highly suboptimal use of resources, leading to reduced performance,
inability to scale, misuse of resources and consequent over-charging of end users.

e S01.2: Increased system throughput. By taking global and elaborate decisions
considering the entire mix of workloads to be executed in the supercomputer, we aim
to significantly raise the system throughput, servicing more applications per day and
ultimately increasing user satisfaction and system impact.

e SO01.3: Minimized performance degradation under power constraints. Power
capping is a common mechanism to align supercomputer consumption with the power
availability and charges of the supplier. In REGALE we will replace the current
brute-force, performance-oblivious strategies by a set of sophisticated policies for
dynamic adaptation to power envelopes without compromising application
performance and system throughput.

e SO0O1.4: Decreased energy to solution. REGALE supports the operation of a
supercomputer with energy consumption as a first class citizen. In this case we
incorporate mechanisms and policies to minimize energy to solution if this is
promoted by the operation policy.

Strategic Objective 2 (SO2): Broad applicability. This strategic objective has guided our
architecture design and prototyping towards maximizing openness, platform independence,
scalability, modularity, extensibility and simplicity, allowing for its implementation with various
software modules, on any supercomputing platform, for the realization of SO1. In particular,
this will be achieved through compatibility to relevant specifications and standards.

To assess if this SO is met, we validate the existence of the following key features:

e Scalability: The REGALE system should be able to operate in exascale setups and
beyond.

e Platform independence: The REGALE system should be able to operate across all
major architectures of large supercomputing facilities and be free of any vendor
lock-in.

e Extensibility: The REGALE system should be extensible to any new feature or
component that aligns to its open architecture.

Strategic Objective 3 (SO3): Easy and flexible use of supercomputing services.
Widening the use of advanced computational and data facilities beyond the highly skilled
traditional HPC users requires significant efforts on the side of the centers. In REGALE we
release the developers and users of complex applications that originate from new industrial
use cases from the extremely cumbersome task to finetune the execution of their application
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on an exascale system. Moreover, we equip them with an easy-to-use set of tools to facilitate
the development and deployment of their applications to exascale systems.

We validate this SO through the existence of the following key features:
e Automatic allocation of resources: Users of complex applications should not bother
with the way their application is distributed on an exascale system.
e Programmability: Application developers should find the REGALE architecture and
system easily accessible to develop and deploy their code(s).
e Flexibility: Applications should be able to execute under lightweight virtualization
within the REGALE- enabled system.

3. REGALE Strategic Objectives and KPIs

The evaluation for REGALE is aligned to the Strategic Objectives of the project as described
in the DoA and summarized in Table 3.1 together with the relevant KPIs and targets. The
objectives of the project are both quantitative and qualitative. SO1 together with its
sub-objectives S01.1-SO1.4 target specific quantitative metrics relevant to resource
utilization that influence performance, energy efficiency and combined metrics. SO2 is mostly
relevant to the qualitative characteristics (functional requirements) of the REGALE library and
SO3 is relevant to widening the use of supercomputing resources to more complex, next
generation applications (REGALE pilots).

Table 3.1 also provides an overview of the status of each one of these objectives, together
with a reference to the section of this deliverable where more information is provided. As
mentioned, the current deliverable focuses on the quantitative objectives of REGALE. For the
qualitative ones, the reader is directed to Section 8 for an overview and to other deliverables
where more detailed information is provided.

Overall, based on the outcome of a rather extensive evaluation campaign, we may note that
the Strategic Objectives of the project have been met.

REGALE - 956560 8 01.05.2024
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Table 3.1: Summary of REGALE Strategic Objectives, relevant KPIs and status based on the evaluation results

application
deployment

Strategic Objective Baseline KPI Target | Status
SO1 | SO1.1: Improved Execution in State Quantitative: 20% Met with the node and GPU co-scheduling schemes (Sections 7.1-7.2)
application performance. -of-the-Art HPC FLOPS or time to
systems solution
Pilots before REGALE 2x Met by pilots (Section 6.1 - 6.5)
S0O1.2: Increased system | State-of-the-Art HPC Quantitative: 30% Met with the node and GPU co-scheduling schemes (Sections 7.1-7.2)
throughput. systems jobs / hour
S0O1.3: Minimization of State-of-the-Art HPC Quantitative: 50% less | Met with Tag-based Application-Aware Power Capping on a specific case - further
performance degradation | systems Decrease penalty experimentation planned (Section 4.1)
under the operation with throughput Met with application-aware power capping with scheduler support (Section 4.3)
power constraints. penalty
S0O1.4: Decreased energy | State-of-the-Art HPC Quantitative: 10% Met with application-aware energy optimization (Section 4.2)
to solution. systems energy reduction Met with application-aware power capping with scheduler support (Section 4.3)
SO2 | Scalability n/a Quantitative exascale | Initial evidence for the REGALE library with preliminary experiments (Section 5)
Initial evidence for energy optimization with simulation results (Section 4.3)
Further experimentation is needed
Platform independence n/a Qualitative n/a Met by the design of the REGALE library (Section 8 and Deliverable D3.3)
Extensibility n/a Qualitative n/a Met by the design of the REGALE library (Section 8 and Deliverable D3.3)
SO3 | Automatic allocation of Traditional HPC Qualitative n/a Met by:
resources application The integration of the pilots with the workflow engines (Deliverable D4.3)
development / The integration of the machine learning models in production systems (Section 7.6)
deployment
Programmability Traditional HPC Qualitative n/a Met by the integration of the pilots with the workflow engines (Deliverable D4.3)
application
development
Flexibility Traditional HPC Qualitative n/a Met by the integration of the pilots 3 and 4 with the RYAX workflow engine

(Deliverable D4.3)

REGALE - 956560
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4. Results of REGALE prototypes

The current state-of-practice in supercomputing operation includes systems that a) are
completely energy/power-unaware and perform brute-force power capping' when needed, b)
have included some form of energy awareness by monitoring and reporting energy
consumption (again with brute-force power-capping) and c) systems that include some
primitive energy/power-awareness and enforce some static energy policies. To the best of
our knowledge supercomputing centers do not perform operational sophisticated energy
management or power capping.

The prototypes of REGALE also called Integration Scenarios (see D3.3) primarily target
S01.3, and secondarily SO1.2 and SO1.4. They rely on an enhanced architecture that is able
to monitor, decide and act appropriately in order to apply sophisticated power capping and
energy control. The ultimate goal is to deliver the benefits of power capping (reduced energy
and thermal effects, compliance to the current state of the power grid) while minimizing its
potentially severe effects on application performance and system throughput. In the next
paragraphs we provide evaluation results of the relevant Integration Scenarios.

REGALE value proposition: REGALE designs and implements a prototype system that,
with the proper collaboration of various modules (monitors, node managers, job managers,
RJMS), is able to apply sophisticated power capping and reduce its penalty in system
throughput by 50%. Below, we provide results from three REGALE prototypes that work in
this direction, i.e., a) Tag-based Application-Aware Power Capping, b) Application-aware
energy optimization under a system power cap and c) Application-aware power capping with
scheduler support.

4.1 Tag-based Application-Aware Power Capping

The rationale underlying the evaluation strategy for Tag-based Application-Aware Power
Capping (TAAPC) is to assess how it performs when compared to the standard Fair-Sharing
Power Capping (FSPC) policy, described in the below subsection. This evaluation is
performed for different power budgets to enforce on the managed partition of compute nodes
during the executions of several scheduled sets of jobs representative of typical
supercomputing workloads.

Key Performance Indicator

Given the above, short summary of the evaluation strategy for TAAPC, it clearly appears that
it strongly relates to the Strategic Objective SO1.3, which is representative of the fact that the
main goal of TAAPC is to minimize the performance degradation induced by operating with
power constraints.

Consequently, one Key Performance Indicator (KPI) seems perfectly suited to the
quantitative evaluation of TAAPC, namely the job throughput (jobs/s). For a given scheduling
of HPC jobs executed on a given partition of compute nodes under a given power budget, the
associated objective is hence that the performance degradation (i.e. the decrease of the job
throughput) induced by TAAPC is lesser than the one induced by FSPC. On the one hand,
the baseline job throughput against which those performance degradations are evaluated is

' By brute-force power capping we refer to the process where the entire power-cap set for the data
center is applied evenly to the server nodes disregarding the nature of the jobs running on the system.

REGALE - 956560 10 01.05.2024



D1.4 REGALE evaluation

associated with the execution of the same scheduling on the same partition of nodes, but this
time without any power constraint enforced. On the other hand, FSPC is a power-capping
strategy according to which all the nodes of the managed partition are power-capped to the
same ratio of their nominal consumption. For instance, let's imagine a partition of 10 nodes. 5
of them are of model A, which draws 450W, and the other 5 nodes are of model B, which
draws 300W. If the power envelope to enforce for the partition is 3375W (instead of the
3750W nominal power consumption), then FSPC consists in enforcing power caps on the 10
nodes to reduce their relative power consumptions by 10% (405W for a node of model A, and
270W for a node of model B).

Finally, numerically, the objective set for TAAPC at the start of the project was to induce 15%
lower performance degradations than FSPC.

Experimental platform

The experimental platform used to evaluate TAAPC is an Atos on-premise supercomputing
partition consisting of 12 BullSequana X440-A5 compute nodes (details below) with an
Infiniband HDR100 interconnection network. The partition is managed by Slurm (version
23.11), and both Bull Energy Optimizer (BEO) and its module implementing TAAPC are
installed on the management nodes. BEO features 1Hz out-of-band energy monitoring of the
compute nodes, and has the capability to enforce power caps on the latter, also in an
out-of-band fashion.

Details of the BullSequana X440-A5 compute blades:
e 2 sockets with AMD Epyc 7282 (2 x 16 cores) @ 2.80 GHz
e 128 GB DDR4 (8 x 16 GB) @ 3200 MHz
e Direct Liquid Cooling (DLC)

Evaluation protocol

Before describing the evaluation protocol, we define the notion of a “schedule of HPC jobs”.
In the following, it represents a fixed set of HPC jobs (i.e. of HPC applications being executed
on sets of compute nodes), submitted following fixed and reproducible sequence and
timeline. In other words, defining a “schedule of HPC jobs” is tantamount to defining an
ordered sequence of job submissions. As a result, it makes it possible to evaluate the impact
of a power management strategy on the job throughput associated with a given
supercomputing workload.

And that is precisely the goal of this experimental protocol, in which several schedulings of
HPC jobs are to be executed on the partition of compute nodes described in the previous
section, with three different configurations regarding power management, for a range of
power budgets:

1. Without enforcing any power caps;

2. With power caps enforced according to the FSPC policy;

3. With power caps enforced according to the TAAPC mechanism.

Here, the considered range of power budgets is defined with respect to the nominal power
envelope required to operate all the compute nodes of the partition at their Thermal Design
Power (TDP), called “aggregated TDP” (AggTDP) in the remaining of the document: from
100% to 80%, included, with a 5% step.

REGALE - 956560 11 01.05.2024
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Regarding the considered schedules of HPC jobs, the below Table 4.1 presents synthetic
information about them. Notably, it identifies each schedule by a codename, specifies the
repartition of the executed applications between the three applicative tags, and adds
additional information about the schedule when necessary. Below the table, a short rationale
is given for every schedule. The fifth column contains the number of jobs which are executed
right away at the start of the schedule and the number of jobs pending in the queue between
parentheses.

As a reminder, the notion of “tag” is associated with the executed application, to qualify its
dominating behavior. The first implementation of TAAPC defines three tags: (1) COMPUTE to
identify compute-bound applications, (2) MEMORY to identify memory-bound applications,
and (3) MIXED to identify applications which are not clearly dominated by one of the previous
two behaviors. Hereinbelow, the pool of HPC applications used for the experiments described
in this document consists of:

e COMPUTE: HPL and NPB.EP;

e MEMORY: HPCG, NEMO, and NPB.MG;

e MIXED: GROMACS, NPB.LU and NPB.FT.

Note that the workloads for those applications were designed/adjusted to induce an
execution time without any power constraints of 10 to 15 minutes.

Table 4.1: Synthetic information about the schedules of HPC jobs involved in the evaluation
of TAAPC.

Codename | COMPUTE | MIXED | MEMORY # jobs Additional information
(+ in queue)
OoCcJucC 100% 0% 0% 1 (+0) 4 active nodes
8 idle nodes
HMHC 50% 0% 50% 4 (+0) No waiting queue.
VNNQ 100% 0% 0% 7 (+0) 4 jobs on 1 node, 2 jobs
on 2 nodes, and 1 job
on 4 nodes
VNSQ 100% 0% 0% 7 (+3) Same as VNNQ, plus 2

jobs on 1 node and 1 job
on 2 nodes in the queue

VNBQ 100% 0% 0% 7 (+2) Same as VNNQ, plus 1
job on 2 nodes and 1 job
on 4 nodes in the queue

RWSCH 20% 60% 20% 7 (+8) Alike production
environment -
Mixed workload + jobs in
the queue

Rationale for OCJUC: The schedule consists of 1 COMPUTE job executed on 4 nodes while
the 8 others are idle. On the one hand, for TAAPC, the expected behavior is that the idle
nodes will be capped to their Minimal Operating Point (MOP), since they do not need any
power to perform computation. As a result, it will free some power budget for the active
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nodes executing the job, which will hence suffer only minimal performance degradations. On
the other hand, the FSPC strategy will induce equally constraining power caps on all the
nodes, whether active or idle. Consequently, the performance of the COMPUTE application
executed by the four active nodes should be significantly degraded.

Rationale for HMHC: The schedule consists of 4 jobs, half of them tagged COMPUTE, and
the other half tagged MEMORY. No waiting job in the queue, so, as soon as a job terminates,
the nodes which were allocated to them are idle. The expected behavior for HMHC is to
observe: (1) initially, a shift of the power budgets from MEMORY jobs to COMPUTE jobs, so
that the latter could run with less performance degradations and complete sooner when
compared to FSPC, (2) the power budgets being shifted back to the MEMORY jobs until their
completions, (3) globally, the 4 jobs should complete sooner when compared with FSPC, and
half of the partition should also be available sooner for subsequent jobs.

Rationale for VNNQ, VNSQ, and VNBQ: As described in Deliverable D2.3 “Final integration
of sophisticated policies in the REGALE prototype”, the TAAPC mechanism enforces power
capping rules within the tag-class of jobs starting with the jobs to which fewer nodes are
allocated. This trio of evaluation scenarios aims at assessing the soundness of this design
choice by using schedules consisting only of COMPUTE jobs with various numbers of
allocated nodes and different types of queues (respectively, no jobs in queue, jobs with small
numbers of nodes allocated in queue, jobs with large numbers of nodes in queue). The
expected behavior is that:

e On average, jobs in the queue will have access to resources sooner with TAAPC
when compared to FSPC since large jobs will have more power budget to complete
sooner, hence freeing enough nodes to accommodate both large and small pending
jobs;

e The increase of TtS induced by performance disparities under power capping (see
D2.3 for more details) shall be lower for TAAPC when compared to FSPC ;

e As a result, at the global scale, the schedules shall complete sooner when the power
budget is enforced by TAAPC when compared to FSPC.

Rationale for RWSCH: The schedule associated with this evaluation scenario aims to mimic
real-world conditions on a production supercomputer, with mainly MIXED jobs, a varied
number of nodes allocated to jobs, and a populated waiting queue of jobs. Thus, this
evaluation scenario can be considered a functional and performance validation test for the
TAAPC mechanism compared to the FSPC strategy.

Finally, we mention that each “experimental point” (i.e. the execution of a schedule for a
configuration of the power management and a given power budget) was replicated seven
times and that the data presented in the next section are the averages of those seven
repetitions.

Limitations

The protocol defined in this document for the evaluation of TAAPC was only partially
implemented due to several delaying events (e.g. faulty compute blades regarding power
capping). However, the whole evaluation protocol is included in the roadmap of the
PowerEfficiency team of Eviden. That is why TAAPC is still being worked on, and the protocol
is to be fully carried out. The obtained results will be disseminated.

REGALE - 956560 13 01.05.2024



D1.4 REGALE evaluation

Below we provide a summary of the limitations of effectively implemented evaluation protocol
to this date, when compared to the one described in the previous subsections:

e Only one power budget was evaluated, namely 85% of the AggTDP of the managed
partition of nodes;

e Out of the set of evaluation scenarios presented previously, only OCJUC was
implemented. Its results are discussed in the next subsection;

e Out of the corpus of applications to be used in the evaluation protocol, only HPL
(CPU), was used for the limited implementation which results are presented below.

Results and discussions

OCJUC: As Table 4.2 shows, when it comes to enforcing an 85% AggTDP power budget for
the OCJUC evaluation scenario, the TAAPC mechanism outperforms the FSPC strategy. As
explained in the associated rationale, on the one hand by shifting the power budget from the
idle nodes to the active nodes, TAAPC allows the active nodes to draw their TDPs.
Consequently, the only performance degradations induced by TAAPC on the execution of the
COMPUTE job are due to the time spans with boost frequencies enforced being limited. On
the other hand, by capping the power consumption of the active nodes at 85% of their TDPs,
FSPC induces roughly 13% of performance degradation. It means that TAAPC induces 94%
less performance degradation than FSPC for the OCJUC scenario. This result satisfies the
15% KPI in this scenario associated with the evaluation protocol. To conclude, it is worth
mentioning that this evaluation scenario is a special case representing an under-used
supercomputer, which may happen in real-world production systems (e.g. at night, during
holidays, ...). And TAAPC is able, by design, to leverage such a situation when FSPC
cannot.

Table 4.2: Mean durations (out of 7 executions) of the schedule associated with the
evaluation scenario OCJUC. “Baseline” corresponds to executions without any power
capping enforced. “TAAPC - @%” corresponds to executions with a power budget of ¢% of
the AggTDP of the managed partition enforced by the TAAPC mechanism. Same meaning
for “FSPC - ¢%”, except that the power budget is enforced by the FSPC strategy.

Configuration | Duration (in seconds) | Relative increase of the TtS i.r.t “Baseline”

Baseline 785 0%
TAAPC - 85% 791 +0.765%
FSPC - 85% 886 +12.9%

4.2 Application-aware energy optimization under a system power cap

In this REGALE prototype, the Job Manager and the Node Manager optimize the power
management state of the computational resources, selecting the right combination in
correlation to the needs of the monitored applications. In this specific case, we decided to
optimize the power consumption modifying the p-states during the run of the underlying
application. We used as a benchmark the NAS IS, class E, run on the E4 subsystem
composed of 4 nodes Ice Lake Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz.

Experimental setup
The results obtained both with COUNTDOWN and EAR, each in respect to the monitoring
system represented by EXAMON, were already presented in the deliverable D3.2
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(paragraphs “COUNTDOWN - EXAMON” and “EAR - EXAMON”). Here we focus and report
the results obtained from the specific integration between COUNTDOWN and EAR
(described in the deliverable D3.2, paragraph “COUNTDOWN - EAR”). We note that, in this
prototype, the Monitor provides feedback both to the system administrator and to the users
on job efficiency and on metrics, through ad-hoc dashboards (see deliverable D3.2).

All the policies of EAR have been tested (monitoring, min_energy, min_time), with different
starting p-states depending on the logic behind their internals. Moreover, two modalities of
COUNTDOWN have also been applied: monitoring and on.

Under this last one, COUNTDOWN will apply the maximum frequency decided each time by
EAR exiting the MPI events which triggered its threshold for the frequency modification, while
the minimum frequency applied at the entrance of the MPI events mentioned, remained
unchanged (the one stored in the file cpuinfo_min_freq).

Results

Table 4.3: KPIs obtained from the applications of the different policies both for EAR and
COUNTDOWN.

AVG Energy |Power |TTS Reduction |Reduction (Increase
Freq PKG PKG in Energy |in Power (in TTS
CNTD analysis 2963 | 622609(1237.22(503.234 - -% -%
CNTD on 1642 393735 781.05|504.107 36.76% 36.87% 0.17%
EAR mon CNTD analysis 2960| 636774)1239.89|513.572 -2.28% -0.22% 2.05%
EAR mon CNTD on 1810( 418224 817.15| 511.811 32.83% 33.95% 1.70%
EAR min time CNTD
analysis 2970| 627791|1247.97|503.049 -0.83% -0.87%| -0.04%
EAR min time CNTD on 2608| 570664 | 1133.53|503.438 8.34% 8.38% 0.04%
EAR min energy CNTD
analysis 2963| 635501 1265.81|502.051 -2.07% -2.31%| -0.24%
EAR min time CNTD
analysis def pstate 4 2116 465748 | 856.32|543.895 25.19% 30.79% 8.08%
EAR min time CNTD on
def pstate 4 1822 431059| 802.5(537.145 30.77% 35.14% 6.74%
EAR min energy CNTD
analysis def pstate 1 2019| 454263 852.06(533.136 27.04% 31.13% 5.94%
EAR min energy CNTD on 5.25%
def pstate 1 1693 413841 781.35|529.646 33.53% 36.85%

In Table 4.3 we report the results obtained for the different policies and modalities used in
combination; We also present cases in which the starting p-states of EAR were modified
enabling the turbo mode (the ones without the definition “def pstate 1” or “def pstate 4”, which
actually represent the default behavior of the policies of EAR, regarding the maximum pstate
available). In addition, in the table we report the KPIs used for the evaluation of this scenario:
T.T.S. (Time To Solution) and Energy and Power consumed for reaching the final solution,
with the corresponding increases or reductions, reported in percentage regarding the
comparison case “CNTD analysis”. Labels used in the table: 1) CNTD analysis =

REGALE - 956560 15 01.05.2024
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COUNTDOWN applied, in analysis mode; 2) CNTD on = COUNTDOWN applied, enabling
the frequency reduction; 3) EAR mon = EAR using the policy monitoring; 4) EAR min time =
EAR using the policy min_time; 5) EAR min energy = EAR using the policy min_energy; 6)
def pstate 4 = EAR used with its default pstate (the fifth found on the list of the available
frequency on the system, being the index starting from 0) for the policy min_time. If this
specification is not present, then is the case where we explicitly modified it, setting it equal to
the turbo pstate; 7) def pstate 1 = EAR used with its default pstate (the second found on the
list of the available frequency on the system) for the policy min_energy. If this specification is
not present, then is the case where we explicitly modified it, setting it equal to the turbo
pstate.

Figure 4.1 shows the average frequency, the time spent reaching the final solution, the
energy and power consumed at package level, plus the increases or reductions of the KPIs
involved.

Freq (MHz)

3000

2000

1000

CNTD CNTD EAR EAR EAR min EAR min EAR min EAR min EAR min EAR min EAR min EAR min
analysis on mon mon time time energy  energy time time energy energy
CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD
analysis on analysis on analysis on analysis ondef analysis on def
def pstate 4 def pstate 1
pstate 4 pstate 1

TTS (sec)

600

400

200

CNTD CNTD EAR EAR EAR min EAR min EAR min EAR min EAR min EAR min EAR min EAR min
analysis on mon maon time time energy energy time time energy energy
CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD
analysis on analysis on analysis on analysis ondef analysis on def
def pstate 4 def pstate 1
pstate 4 pstate 1
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Power PKG (W)

1500

1000

500

CNTD CNTD EAR EAR EAR min EAR min EAR min EAR min EAR min EAR min EAR min EAR min
analysis on mon mon time time energy energy time time energy energy
CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD CNTD
analysis on analysis on analysis on analysis ondef analysis on def
def pstate 4 def pstate 1
pstate 4 pstate 1

Energy PKG (J)
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analysis on mon mon time time energy energy time time energy energy
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analysis on analysis on analysis on analysis ondef analysis on def
def pstate 4 def pstate 1
pstate 4 pstate 1

Increase in TTS ("CNTD analysis" is the reference) (%)

10.00%

7.50%
5.00%
2.50%
-2.50%

CNTD on EAR mon EAR mon EAR min EAR min EAR min EAR min EAR min EAR min EAR min EAR min

CNTD CNTDon time time energy  energy time time energy  energy

analysis CNTD CNTDon CNTD CNTDon CNTD CNTDon CNTD CNTDon

analysis analysis analysis def pstate analysis def pstate
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4 1

REGALE - 956560 17 01.05.2024



D1.4 REGALE evaluation

Reduction in Power ("CNTD analysis" is the reference) (%)
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30.00%
20.00%

10.00%

0.00%

-10.00%
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CNTD CNTDon time time energy  energy time time energy  energy
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analysis analysis analysis def analysis def
def pstate 4 def pstate 1
pstate 4 pstate 1

Reduction in Energy ("CNTD analysis" is the reference) (%)
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CNTD CNTDon time time energy  energy time time energy  energy
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analysis analysis analysis def analysis def
def pstate 4 def pstate 1
pstate 4 pstate 1

Figure 4.1: Average frequency, TTS, energy and power.

As we can see, the best case reported for reduced energy-to-solution KPl1 SO1.4 is the one in
which only COUNTDOWN is involved. But that is explainable considering the fact that, at the
moment, it just works with the maximum and minimum achievable frequencies, not
considering any possible power management logic behind the resource utilization of the
nodes involved.

This case is immediately followed by the one in which EAR is used with the min_energy
policy enabled, in conjunction with the work done by COUNTDOWN, entering and exiting the
MPI phases. In this last case, we in fact obtain a drastic reduction in power and energy
consumption (around, respectively the 36% and 33%), by paying an increase in the time
spent to reach the end of the benchmark, around the 5%. And spending around half a minute
more, on a scale of 9 minutes, is not too much, compared with a power consumption reduced
by more than one third.
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It is worth noting that the configuration “EAR min energy CNTD on ” leads to a benefit both in
terms of time-to-solution and energy-to-solution addresses at the same time SO1.2 and
S0O1.4 KPIs which is very promising.

4.3 Application-aware power capping with scheduler support

This integration scenario covers a use case where the job scheduler plays an active role in
the power management of the system while the System Power Manager applies the cluster
powercap, dynamically setting the node powercap based on application characteristics. The
main goal of this scenario is to evaluate the performance of dynamic cluster powercap
distribution with scheduler support against static powercap distribution (ie, every node has a
certain amount of power budget at all times). More information about the internals of this
scenario can be found in Deliverable 3.3, in its corresponding section. This deliverable
pertains only to the evaluation of the results.

To evaluate this, we have simulated two supercomputing systems (a small one with 512
nodes and a large one with 10000 nodes) evaluating the performance of static powercap,
dynamic powercap, and dynamic powercap with minimal scheduler support. Each platform
has been evaluated with a workload generated using Lublin’s? model. Both cases simulate an
homogeneous cluster with dual Intel Xeon Platinum 8480+ processors, with a TDP of 350W
each, and with the DRAM portion consuming up to 75W per CPU. Since the main areas of
power control that we have are CPU + DRAM (also known as package power, or PKG), we
have used those metrics as the power indicators. This results in an average idle power of
~150-170W and a maximum of 850W. The power and speed curves of the processors have
been based on experimental data obtained on real hardware while running several
benchmarks and averaged out.

The scheduler support at this point is a simple communication that the cluster is running
close to the maximum power budget (90% of the total power, in this case) so it can stop the
execution of new jobs until power is freed. No jobs are canceled by this system, and no other
changes to the scheduling are done.

Key performance indicators

The performance indicators are:

Average job run time (time to solution), associated with SO1.3

Average job wait time, associated with SO1.2

Average job response time (derived from the previous two)

Total energy consumed by the workload (including the energy consumed by nodes
not currently running an active job), associated with SO1.4.

Small scale evaluation

For our small scale evaluation, we simulated a cluster of 512 nodes with a workload of 1000
jobs. We have calculated that the cluster, when running at it's full capabilities should
consume 435200 Watts (850W * 512 nodes) according to the TDPs of the CPUs and DRAM.

We have contemplated three scenarios for our simulations:
- 95% power budget: total cluster power must never exceed 413440 Watts
- 90% power budget: total cluster power must never exceed 391680 Watts

2https://www.cs.huji.ac.il/labs/parallel/workload/models.html#lublin99
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- 85% power budget: total cluster power must never exceed 369920 Watts

For each scenario, the workload remains the same, with the only variation being the power
allocation. We run each scenario three times: first with the baseline (with no power
management from the System Power Manager) which has a fixed power allocation per node,
then with the System Power Manager which distributes the power amongst the nodes
according to their needs, and finally with the System Power Manager contacting the Job
Scheduler when the cluster is at almost its limit to stop new job execution until power frees

up.

Figure 4.2 shows the improvements to both time to solution and wait time for every scenario.
The gains increase inversely to the power budget due to the job needs as well as the effects
of the power distribution. For example, in the first case (95% power budget) an important
percentage of jobs (>50%) can run at their desired settings without any performance penalty,
due to their required power to run being lower than the power allocation of the nodes. As the
power budget goes lower, the static powercap solution goes down in effectiveness since
more and more jobs become power constrained. On the other hand, the dynamic solution
has a small overhead in power allocation at the beginning of the jobs, but can usually run at
the desired settings unless the cluster is close to full capacity, even in the more constrained
scenarios.

Performance metrics vs Baseline

80%
70%
60%

50%

40%

30%

e I I I I
10%

o M []

No IS support  With IS support No J5 support  With 1S support No IS support  With JS support

=

95% 90% 85%

B Perc. Run time reduction ™ Perc. Wait time reduction Perc. Response time reduction

Figure 4.2: Reduction in average time to solution and average wait time for jobs compared to
the baseline

In terms of energy efficiency, as can be seen in Figure 4.3 this scenario represents a
substantial reduction of the energy consumed, especially as the power constraints go higher.
This is directly related to the lower time to solution, since finishing the jobs early means
freeing up the resources and either directly placing another job or reducing the power.
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Perc. Energy consumed reduction

35%
30%
25%
20%
15%
10%
5%
R — []
No IS With 1S No IS With 15 No IS With 15
support support support support support support
95% 90% 85%

Figure 4.3: Energy savings compared to the baseline

Large scale evaluation

For our large scale evaluation, we simulated a cluster of 10000 nodes with a workload of
20000 jobs. Just like with the small scale evaluation, we have calculated that the cluster,
when running at it's full capabilities should consume 435200 Watts (850W * 512 nodes)
according to the TDPs of the CPUs and DRAM.

We have contemplated the same three scenarios for our simulations:
- 95% power budget: total cluster power must never exceed 8075 KWatts
- 90% power budget: total cluster power must never exceed 7650 KWatts
- 85% power budget: total cluster power must never exceed 7225 KWatts

We have used the same methodology as before, running each scenario with static powercap,
dynamic powercap (SPM-only) and dynamic powercap with job scheduler support (SPM+JS).

Figure 4.4 shows similar results as seen on the small scale simulation, with moderate gains
on the 95% scenario and substantial ones in 90% and 85%. In this case, the generated trace
differs slightly from the previous one, with the cluster reaching full saturation (ie, having jobs
on most or all nodes concurrently) less frequently, as well as having jobs slightly more
spaced out. This results in smaller gains comparatively, but still performing above the
baseline in all cases.
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Performance metrics vs Baseline
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Figure 4.4: Reduction in average time to solution and average wait time for jobs compared to
the baseline

In regards to energy efficiency, the spacing of the jobs means that running at non-target
settings can sometimes result in better time/energy efficiency. This is especially notable in the
95% power budget case, (as can be seen in Figure 4.5) where running at the 2nd highest
frequency (which the static powercap does) is slightly more efficient than running at target
settings. Nonetheless, as we reach higher power constraints the solution quickly becomes
more efficient in terms of both time and energy.
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Figure 4.5: Reduction in the energy consumption of the trace compared to the baseline
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In regards to the objectives set in Table 3.1, with the exception of the 95% scenario where
the constraints may be a bit too lax for our proposal, we have met the projected
improvements (SO1.3). In terms of speed increase and throughput we have an increase of
over 20% in application speed versus the baseline, as well as over a 30% reduction in
average job wait time. Similarly, in terms of energy efficiency we get a reduction of energy
consumption over the projected 10%. In addition to that, we can see that the solution scales
relatively well from a small-medium cluster (~500 nodes) to a large one (10000 nodes),
especially in the more constrained cases. Finally, the solution seems to improve versus the
baseline the higher the constraints, which brings interesting avenues to explore in further
work as can be seen in the next section.

Job scheduler support as a fallback and future improvements

As can be seen in the previous evaluation, having the job scheduler stop new job executions
as we reach a higher amount of power is not usually the optimal solution when running under
normal constraints, where the simple dynamic allocation is better.

That said, in situations where the power constraints go even lower (75% or below), the Job
Scheduler stopping new job executions results in both better run times and wait times as well
as energy efficiency.

Performance metrics vs Baseline
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Figure 4.6: changes in average time to solution and average wait time for jobs compared to
the baseline in a heavily constrained environment

Furthermore, as we go lower in power budget there is no feasible way to keep all the nodes
running with a constrained power without having to shut most of them down, as there is only
so much power limiting that can be done while a node is running. This can be seen in Figures
4.6 and 4.7 where both the performance and energy metrics exceed the previous cases,
partially due to the inability of static powercap to handle such situations.
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Perc. Energy consumed reduction
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Figure 4.7: changes in the energy consumption of the trace compared to the baseline in a
heavily constrained environment

This can be particularly useful in situations where the power settings have to change abruptly
and harshly due to external circumstances. For example, in cases where there has been a
power grid failure that results in lowered available total power, the Job Scheduler support can
help by not having to manually shut down several nodes and instead having the SPM-JS
combination automatically lower the system’s consumption while keeping throughput at a
maximum.

Finally, as a next step a dynamic switch between using the Job Scheduler and not depending
on the power constraints would be feasible, and improve the overall solution in both cases
with low constraints as well as highly constrained systems while also supporting a dynamic
environment where the constraints may change due to external circumstances. Furthermore,
a next integration that does not directly depend on power consumption but on a related
metric would be easy to implement. An example would be systems where, especially in
summer, the cooling system cannot keep up with the cluster running at full power. In this
case, using the temperature as an indicator the System Power Manager could tell the Job
Scheduler to stop new jobs from starting and thus prevent new sources of heat until the
system cooled off.
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5. REGALE Library

The REGALE library aims to effectively materialize the PowerStack initiative within the
REGALE project, providing a single layer of communication among all the tools, libraries and
software, composing this big ecosystem. This framework is based on the DDS?® and RTPS*
protocols and on FastDDS as their implementation, and to the best of our knowledge it is the
first of its genre, enabling all the different entities involved in the REGALE ecosystem (but not
limited only to these) to communicate and exchange messages (related to information or
even to possible commands), without any further modification inside their internals. In this
document, we report some initial proof of concept, functionality tests and some initial
evaluation tests made on the DDS implementation currently used in the REGALE library
(FastDDS).

5.1 Functionality tests

The benchmark used for the proof of concept of the REGALE library is a simple MPI program
performing an MP/_Alltoall, followed by some computations, to speed up again the frequency
at the end of the MPI phase. We controlled the actual exchange of communication messages
among the involved tools to take specific actions related to power and energy efficiency and
monitoring.

The test was made on the E4 infrastructure, using three different nodes each hosting one
different entity: a Job Manager, a Node Manager, and a Monitoring System, in order to check
the feasibility of exchanging messages among different nodes, using different transport
protocols than the shared memory one (intra-node communication); in this specific case, we
used UDP.

Regarding the Job Manager, the COUNTDOWN implementation has been considered, while
for the other two entities we have used the synthetic components we developed as part of
the REGALE library repository, which act as possible substitutes (very simple ones) of other
and more complicated implementations of the same components. Plus, these synthetic
components can be built with the REGALE library from possible users, to allow them to better
understand the usability and the capabilities of this new layer. We decided to use them for the
sake of simplicity, since the result does not change when plugging them off and inserting at
their places more mature implementations like EAR and EXAMON: we underline again the
fact that we just need to call the same APIls, no matter what implementations are
communicating. They can be, in fact, easily interchanged (as reported in the deliverable
D3.3) with EAR and EXAMON.

Specifically, the synthetic monitoring was programmed to send a reply to the requests, with
the highest frequency possible being 2GHz. Figure 5.1 shows the outcome after launching

3 The DDS specification describes a Data-Centric Publish-Subscribe (DCPS) model for distributed application
communication and integration. This specification defines both the Application Interfaces (APIs) and the
Communication Semantics (behavior and quality of service) that enable the efficient delivery of information from
information producers to matching consumers. The purpose of the DDS specification can be summarized as
enabling the 'Efficient and Robust Delivery of the Right Information to the Right Place at the Right Time.'
https://www.omg.ora/spec/DDS/About-DDS/

4 This specification defines an interoperability wire protocol for DDS. Its purpose and scope is to ensure that
applications based on different vendors' implementations of DDS can interoperate.
https://www.omg.or DDSI-RTPS/2.2
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the benchmark using 16 MPI processes. Figure 5.2 shows the breakdown of time in
computation (APP time) and communication (MPI time).

1456 MHz

e R R R R R Ee g g g MFI TIMING ###ggggaidsddddddddis
AFP time: 23¢

MPI time:

TOT time: 444.

Figure 5.2: Total time of the run and its specific percentage 1) into MPI phases, and 2) into
APP phases (not MPI ones)

We observe that the average frequency reported by COUNTDOWN was 1.4GHz; with simple
calculations, we can obtain the same value from the percentage of time spent in MPI and
APP events, and from knowing the maximum available frequency (now 2GHz) and the
minimum one (still 800MHz):

(0.5276*2GHz) + (0.4724*0.8GHz) = 1.4GHz

Moreover, analyzing the content of the files scaling_max_freq and scaling_min_freq, we can
see that the right number of frequencies have been changed (Figure 5.3).

[ftesser@iwnode@9 ~]$ cat /s evice ystem/cpu/cpux/cpufreq/scaling_max_freq | grep
16
[ftesser@iwnoded9 ~]5 cat /sys/devices/system/cpu/cpux/cpufreq/scaling_min_freq | grep

16
[ftesser@iwnode@s ~]%

Figure 5.3: The scaling_max_freq and scaling_min_freq files are the ones modified by
COUNTDOWN to set the actual running frequencies entering and exiting MPI phases. As we
can see, at the end of the benchmark, run on 16 MPI processes, the frequencies were
corrected modified for the cores pinned by the simulation and that the synthetic Monitor
system reports the correct frequencies (Figures 5.4 and 5.5).
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Figure 5.4: The synthetic Monitoring system is reporting the messages sent by the J.M.,
regarding the actual frequency inside the MPI_Alltoall (the minimum one feasible by the
system, 800MHz)
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Figure 5.5: The synthetic Momtorlng system is reportlng the messages sent by the J.M.,
regarding the actual frequency exiting the MPI_Alltoall (reaching the maximum frequency set
by the synthetic N.M., which was 2GHz)

Overall, we show that the core functionality is in place, and, more importantly, that we needed
less modifications in the implementations of the actors in play, compared, for example, with
what was needed in the REGALE prototypes (integration scenarios). Here in fact, we just
added a couple of APIs in the Job Manager to let it work and communicate with a Node
Manager and a Monitoring. Specifically, the calls involved were:

1) regale_monitor_init (to initialize the Monitor client)

2) regale_nm_init (to initialize the Node Manager client)

3) regale_report job_telemetry (to send current frequency to the Monitoring system)

4) regale_nm_get current_conf (to ask to the Node Manager the actual maximum freq)
5) regale_monitor _finalize (to finalize the Monitor client)

6) regale_nm_finalize (to finalize the Node Manager client)
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We obtained the previous results without taking into account all the things that were
considered in the first version of the Integration Scenario, where we were required to take
under control more things, among which: 1) the right usage of the correct governor
(Userspace), 2) the multiple, parallel and concurrent accesses to the files scaling_setspeed,
3) the already cited problem (the deliverable D3.2 contains more detailed information and
explanations regarding the just mentioned criticalities) of the Job Manager, to not been able
to recognize if the value equal to the minimum one (contained in the cpuinfo_min_freq file)
has been something decided by the Node Manager, or something previously written by the
Job Manager itself.

To conclude, as we previously said, we report here some graphs related to the results
obtained from the evaluation tests we performed on the FastDDS implementation,
considering that something quite important, being this specific implementation the
cornerstone of the REGALE library, concerning the DDS overall system.

5.2 Preliminary evaluation

Our second set of experiments was performed on 10 nodes of the production system G100,
at CINECA. Specifically, the nodes include 2 x CPU Intel CascadelLake 8260, each. Plus, the
transport used were UDP and UDPM (UDP Multicast).

Sending overhead for 1 pub - 1 sub (for each node)
49.52682

25.86159

20+

sending time (pus)

10 7

udp udpM
Protocol

Figure 5.6: Sending times with one subscriber per node (10 node used)
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Latency in reception with 1 pub - 1 sub (for each node)
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Figure 5.7: Latencies with one subscriber per node (10 used)
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Figure 5.8: Latencies with the number of subscriber varying for each node (10 used)
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Comparison between UDP and UDP-multicast protocols in sending to multiple subscribers
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Figure 5.9: Here are reported the sending overheads with the number of subscriber varying
for each node (10 used)
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Figure 5.10: Throughput is reported here, with the number of subscriber varying for each
node (10 used)

As we can see, in Figures 5.6-5.10, the latencies and the overheads required, are in line with
the time needed by the hardware to adopt the modifications for the usage of the p-states
(more or less around 500 microseconds, on an x86_64 architecture).
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6. REGALE pilots

6.1 Pilot 1: Industrial Scale Unsteady Adjoint-based Shape Optimization

of Hydraulic Turbines

State-of-practice: Pilot 1 is dealing with the design/shape optimization of a hydraulic turbine
for minimum pressure pulsations of the flow through the turbine. So far, industries were
dealing with this problem through a trial-and-error procedure, which has an increased cost
(high turn-around time) and may lead to suboptimal solutions. On the other side, academia
has intensively been working on the development of efficient optimization methods to tackle
real-world applications at reasonable wall-clock times.

During REGALE, the optimization problem of Pilot 1 was carried out using evolutionary
algorithms (EAs) assisted by a) surrogate evaluation models (or metamodels; MAEA) to
avoid "useless" calls to the computationally expensive CFD evaluation s/w and b) the
Principal Component Analysis (PCA) to tackle the “curse of dimensionality”, i.e. the
performance degradation of EAs in problems with many design variables. The use of Deep
Neural Networks (DNNs) as surrogates during the optimization has also been exploited.
Thus, optimal designs, for the selected runner blade shape parameterization, were obtained
at reasonable computational cost.

Irrespective of the shape optimization, the performance metrics of hydraulic turbines are
highly affected by the imposed boundary conditions and "feel" uncertainties in the flow rate,
the inlet flow angle etc. To quantify these uncertainties (Uncertainty Quantification; UQ)
methods such as the non-intrusive variant of the Polynomial Chaos Expansion (niPCE) are
used. These require a series of flow analyses at different boundary conditions, the results of
which are stored and, then, post-processed to compute the statistical moments of the
quantities of interest, for instance the mean value and standard deviation of the efficiency, the
head, etc. In REGALE, such UQ studies were performed through the Melissa workflow
manager using a storage-free approach and with the ‘optimal’ allocation of computational
resources for concurrent simulations.

Over and above the optimization and UQ methods, the CFD s/w (PCOpt/NTUA in-house
code PUMA) used for the analyses is GPU-accelerated and contributes to the reduction of
the computational cost of each simulation.

REGALE value proposition: During REGALE, the shape optimization of the runner of a
hydraulic turbine was performed using both the standard EA and the PCA-driven MAEA and
comparisons in terms of the optimization turnaround time and/or the obtained optimized
solution(s) for a given computational budget were made. The optimization runs were
performed on a computational node with 4 NVIDIA A100 GPUs and the search was
parallelized, i.e. concurrent evaluation of four candidate solutions. DNNs were also used as
surrogates to the mixing plane technique, reducing the number of domains that need to be
simulated during each analysis and thus the computational cost per evaluation. The obtained
gain in optimization turnaround time was in accordance with SO1.1 (Improved application
performance); the use of surrogates reduced by 50% (or speed-up 2x) the computational cost
required to reach a solution of the same quality to that of the standard EA. The detailed
comparisons and plots are included in D4.3. Regarding UQ studies, comparisons on the
required storage to compute the statistical moments with and without the use of Melissa were
carried out.
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Evaluation scenarios: The activities are expected to reduce the requirements in a)
programming for ‘managing’ (assigning to the available resources) the various simulations
required for UQ studies and the post-processing of the so-stored results and b) storage of the
flow fields. This is extremely beneficial, particularly in large scale applications. For the latter, it
is important to ensure the good scalability of the PUMA s/w to many-GPU systems. This will
allow the simulation of larger computational domains and, overall, make PUMA ready for
exascale deployment. Given the above, the following evaluation scenarios were tested:

e Scenario 1: Coupling of PUMA with the Melissa workflow manager for UQ studies.
o Baseline: Customized scripts for orchestrating the computations required and
full storage of the results files in order to be post-processed for UQ.
o KPI - Storage Requirements: Evaluate the reduction in the storage
requirements when Melissa is used for UQ analyses.
o KPI - Programmability: User and Developer Experience: Evaluate the ease of
coupling PUMA with Melissa.

e Scenario 2: PUMA s/w scalability tests on multi-GPU systems
o Baseline: PUMA s/w GPU deployment optimized for single GPU simulations.
o KPI - Application speedup: Evaluate the speed-up by increasing the workload
and the number of GPUs.

Evaluation results:

Scenario 1: The first evaluation scenario is related to the coupling of PUMA with the Melissa
workflow manager for UQ studies. The so-developed interface is described in D4.3. The
reduction in storage requirements depends on the quantity of interest (Qol) and the data that
need to be stored from each CFD analysis and post-processed in order to compute the
statistical moments of the Qol. Table 6.1 summarizes the sizes of the basic files (related to
the computation of the quantities of interest) stored by PUMA when simulating the flow on a
relatively coarse mesh (that of Pilot 1) as well as a fine mesh from another hydraulic turbine
geometry. Assuming that M simulations need to be performed for UQ, using Melissa for
computing the statistical moments reduces the required storage from M to 1/M. In the UQ
problems considered in Pilot 1 (with one or two uncertain variables), the value of M varies
from 3 to 16; thus the reduction in storage may be from a few MB to dozens of GB.

Table 6.1: Size of basic files stored by PUMA.

Binary file size (MB)
Type of data
Coarse mesh Fine mesh
Runner blade surface 1.6 2
Runner domain iso-stream 2.3 8.2
Full Storage 553 1609

As far as the programmability and developer/user experience are concerned, a) interfacing
PUMA with Melissa requires minimum programming and/or scripting skills, thus can be easily
accomplished even by non-experienced developers and b) the Melissa workflow manager
undertakes the automatic allocation and use of the resources required for the numerous
simulations. These are in contrast to the development of customized scripts/workflows to
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orchestrate the ‘optimal’ use of the available resources, store any required data and
post-process them.

To sum up, the above described gains from the UQ workflows using Melissa are in
accordance both with the SO1 (Effective utilization of resources) and the SO3 (Easy and
flexible use of supercomputing services).

Scenario 2: In this scenario the scalability of PUMA on multi-GPUs systems is examined. The
speed-up is evaluated by increasing the number of GPUs used to simulate the flow in a given
computational domain, i.e. the workload is practically specified by the number of nodes.
Different sizes of computational grids from hydraulic turbines were tested. The simulations for
this evaluation scenario were performed mainly on the GRNET SA high-performance
computing system ARIS (Advanced Research Information System). Specifically, the ML node
of ARIS with 2 x Intel(R) Xeon(R) E5-2698v4, 512GB RAM and 8 x NVIDIA V100 GPUs
(16GB memory each) was used. The reason for using only this node of the ARIS HPC
system was related to the drivers and compilers the PUMA s/w requires (NVIDIA driver
470.57.02 or higher, CUDA 11.4 etc). Three computational meshes with ~4.5Mi (coarse),
~12.5 Mi (medium) and ~35Mi (fine) nodes, respectively, were used and the results are
summarized in Table 6.2.

Table 6.2: Summary of the results from evaluation scenario 2 on the ARIS HPC system.

Computational Grid Coarse Medium Fine
Number of Nodes 4572823 12427323 35065403
# GPUs Seconds per iteration / Mean GPU memory usage (%)

1 1.71/85.7 - -

2 0.97/52.4 - -

3 0.76 /41.1 2.08/97.7 -

4 0.68/35.5 1.61/78.3 -

6 - 1.17/58.4 1.43/97.2

8 - 0.95/33.8 1.26/65.8

The CFD simulation on the coarse mesh can be carried out on a single GPU by using 85.7%
of its memory. A speed-up of 1.76x is achieved when using 2 GPUs. This mesh is not
expected to scale well when increasing the number of subdomains and as a consequence
the GPUs; a speed-up of 2.5x is achieved on 4 GPUs. For the medium sized mesh at least 3
GPUs are required for the simulation. A speed-up of 1.77x is obtained when duplicating the
number of GPUs, i.e. from 3 to 6. This mesh scales well up to the 8 available GPUs. This is
the case for the fine mesh which needs at least 6 GPUs for the flow simulation.

A mesh of ~45Mi nodes was the largest that could be simulated on the ARIS system. In order
to check the scalability of PUMA on finer meshes a PCOpt/NTUA cluster node with 4 NVIDIA
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A100 GPUs (3 with 40GB memory and one with 80GM memory) was additionally used. On
this node the simulation of meshes from 40Mi to 103Mi nodes. Each iteration of the finest
possible mesh that could run to this node (using ~99% of the available memory of all GPUs)
took 0.87seconds. The above-mentioned tests are inline with SO2 (Broad applicability
scalability). The restructuring of the parallel deployment and reduction in memory
requirements of the PUMA s/w performed during REGALE allowed for the simulation of
computational meshes of up to 100Mi nodes.

6.2 Pilot 2: In-Transit Workflow for Ubiquitous Sensitivity Scope: Very
large scale Sensitivity Analysis Analysis and MetaModel Training.

Application to Infrastructure Safety.

State-of-practice: Multiple simulation runs (sometimes several thousands) are required to
perform uncertainty quantification studies, complex optimization, data assimilation or recently
for training machine learning metamodels. Current practice consists in running all the
necessary instances with different sets of input parameters, storing the results to disk, often
called ensemble data, to later read them back from disk to compute the required data
processing. The amount of storage needed may quickly become overwhelming, with the
associated long read time that makes data processing time consuming. To avoid this pitfall,
scientists reduce their study size by running low resolution simulations or down-sampling
output data in space and time. Today terascale and tomorrow exascale machines offer
compute capabilities that would enable large scale studies ranging from uncertainty
quantification to training metamodels. But they are unfortunately not feasible due to this
storage issue.

REGALE value proposition: Novel approaches are required. In situ and in transit
processing emerged as a solution to perform data analysis starting as soon as the results are
available in the memory of the simulation. The goal is to reduce the data to store to disk and
to avoid the time penalty to write and then read back the raw data set as required by the
classical postmortem analysis approach. To our knowledge the only available in transit
solution for dealing with large scale multiple simulation runs is the open-source software
Melissa. In the context of REGALE, UGA and EDF collaborated to run a multiple simulations
study of an industrial case. EDF will provide the model and parameters for large-scale CFD
simulations using OpenTelemac (www.opentelemac.org).

Evaluation scenario: The simulations have been run as a large ensemble and the produced
data were processed online in two different workflows, using the Melissa framework
developed by EDF and UGA:

e The first workflow will target a direct sensitivity analysis to generate various ubiquitous
statistics, i.e. high-resolution spatio-temporal statistics fields, including advanced ones
like Sobol indices and quantiles.

e The second workflow will first train a deep neural network metamodel on-line from the
data produced by the simulations, still using Melissa.

Sensitivity Analysis

We aimed at performing a sensitivity analysis large run with Melissa. Before REGALE,
Melissa was connected to a single Computational Fluid Dynamics (CFD) code, the
open-source Code_Saturne (www.code-saturne.org). In this pilot, Melissa has also been
connected to the open-source suite OpenTelemac (www.opentelemac.orq).
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A use case concerning river floodings was selected. The reason is that, as the global climate
has been changing, the number and intensity of natural disasters have significantly increased
in recent decades. Owing to the frequent occurrence of floods caused by heavy rain, urban
floods or floods near power plants have become an important question, and research interest
has increased. The selected use case models a section of the Garonne river in the south of
France. This use case does not contain any urban areas or power plants, thus it can be
shared with the scientific community. Flow depth estimation that is often limited by
uncertainties in hydrodynamic numerical models. In order to overcome these limits,
uncertainties should be analyzed. This use case investigates the effect of two uncertainty
sources on the water level calculation:, the roughness coefficient and the upstream
discharge. Indeed, the hydraulic roughness is uncertain because flow measures are not
available or reliable for calibration and validation. Discharge is also uncertain because it
results from extrapolation of discharge frequency curves at very low exceeding probabilities.

Tests were performed on the EDF's corporate supercomputer Cronos
(https://www.top500.org/system/179899/). Melissa and Telemac were installed and used in
this system.

During this study, Melissa Server treated on-the-fly the data coming from the simulations. We
would like to remark that, in a classical study, all this data would be output to the filesystem,
and read back to compute statistics, which is current practice for EDF simulation engineers.
We observed that avoiding intermediate files has several advantages:

- Improves the simulation execution times, because data takes time to be written.

- No post-processing is necessary because the final result is directly available at the
end of the simulation runs.

- The study is simpler from a user’s point of view because, once the configuration files
are ready, the only action to perform is calling the launcher script.

We believe that these reasons go further than a quantitative study. Melissa is in fact a
game-changer that allows performing studies that were not possible before, and simplifies
the realization of the existing studies.

MetaModel Training

We led a series of developments and experiments to propose a novel way to compute deep
surrogates by online training rather than the classical file-based approach. This led to a new
version of the Melissa server

Experimental results obtained go beyond our expectations with significant gains in both
performance and learning quality compared to the classical offline training strategy where
simulations are first executed to produce, and next train the neural network through several
epochs reading the simulation data from disks. The table below is an extract from our
publication at Supercomputing’23. The offline line operates in two phases 1) data generation
with 2000 cores and storage in files 2) classic learning by epoch with 4 GPUs. Even when
configuring Pytorch to overlap file reads, the number of samples processed by the GPU is 38
samples/s. The online line generates the data (5000 cores) and does the learning on 4 GPUs
at the same time. Learning goes from 24 hours offline to less than 2 hours with a processing
rate of almost 500 samples/s. With no more storage constraints, learning is done on 2M
examples (10TB of data) instead of 25k offline (100GB), improving the generalization
capacity of the neural network by more than 45%.
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BUFFER GENERATION/ TRAINING GENERATION  ToranL  Dataser UNIQUE SAMPLES RMSE | Galy  THROUGHPUT
Resources(Cores & Gpu) (HOURS) (HOURS) (GB) (N) (%)  (sAamPLES/SEC)

OFFLINE 2,000C / 400, 4G 0.22 24.5 100 25,000 25.1 — 38.2

RESERVOIR 5,120C / 400, 4G — 1.97 10,000 2,000,000 13.2 474 4T6.T

Using consolidated figures provided by the supercomputer center (1 kh/core CPU = 6€, 1
kh/GPU V100 = 360€, 1TB (SSD storage) = 56€), leads to a cost with online training at
63.8€, only 29% above the cost of offline data generation and training at 49.1€. The cost of
offline training would decrease to 41.16€ when repeated (no storage and data generation
costs). If offline training would have been performed with the 8TB dataset of online training,
the sole storage cost would account for 480€.

This work meets REGALE Strategic Objectives SO1.1 Improved application performance
with execution time going from 24h to 2h (x12), SO1.4. Melissa has been designed to
address SO2 Scalability (no file thus no I/O bottleneck and better usage of GPUs), SO2
Platform Independence (Pytorch and Tensorflow are both supported) and SO2 Extensibility
(modular design easing extensions to other simulation, support for various batch schedulers,
data processing engines). SO3 objectives are also addresses: SO3 Automatic allocation of
resources, Melissa taking care of interacting directly with the batch scheduler (SLURM and
OAR supported) for resource allocation; SO3 Programmability switching from C original
implementation of the server to Python for ease of use; S03 Flexibility thanks to Melissa
modular design.

6.3 Pilot 3: Enterprise Risk Assessment

Scope: OLISTIC Enterprise Risk Management Platform provides risk assessment for
organisations of various sizes. Risk assessment in OLISTIC is based on a model that
represents assets and their vulnerabilities, and a graph (directed acyclic graph (DAG) that
depicts all applicable asset interconnections. To calculate the overall risk assessment we
need to identify and quantify the specific risks associated with each software component and
their interconnections. Furthermore, we use asset chains that represent every possible path
among software assets in order to calculate the attack paths that can be exploited to reach
specific assets. This is a unique selling point and major benefit of OLISTIC that allows
organizations to better protect even their most critical assets.

State-of-practice: Until now, OLISTIC operated with a functional version that included attack
path calculation and risk assessment, through the usage of Drools business rule
management; however the operation was limited by the size of the attack path and the
number of asset vulnerabilities . Finding all available paths in a graph can have exponential
time complexity, which makes calculations even more difficult as the topology increases. The
same is true the analysis of low-level traffic collected from (net-traffic-)agents is required and
can be very demanding when the magnitude of data scales, resulting in high-CPU usages
and can be time-consuming for the retrieval of computed risks. With the transition to an
approach based on the usage of optimised traversal algorithms and the usage of
High-Performance Computing (HPC), we enhance the platform's efficiency significantly,
streamlining the assessment process, in comparison to existing server setups that cannot
easily support such magnitude of processing capabilities.
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REGALE value proposition: Utilization of an HPC environment for the network analytics
process for Advanced Persistent Threats and graph calculations, can efficiently lead to higher
performance results. In the context of REGALE we extend the OLISTIC platform accordingly
for retrieval of high-volume traffic in batch-processing manner, to allow the placement of
network-metadata processing workflows to the HPC environment leading to significant
performance gains.

More specifically, the following areas of interest are examined by utilizing the Ryax Platform:
e Efficient placement of reconfigurable programming modules according to input
parameters indicating the retrieval periods of the data. Thus utilization of a framework
supporting the interchangeability of processing workflows according to our needs.
e Enchantment of system capabilities by placing the workflow modules in applicable
nodes. Making it possible to scale Spark analytics workflows with regard to the
volume of traffic collected and thus increase the consumed/processed data over time.

Evaluation scenario: The main objective of this analysis is to calculate all potential asset
vulnerabilities for each chain in a graph (Figure 6.1), where each chain represents every
possible path among software assets. By systematically evaluating each path, we can
identify and quantify the specific risks associated with each software component and their
interconnections. This comprehensive approach allows for a more precise understanding of
where security measures need to be strengthened within the software architecture. Such a
detailed vulnerability assessment is critical for enhancing the overall security posture of the
system, ensuring that protective efforts are both efficient and effective in mitigating potential
threats.

‘- -
SW
( sSwW \

Figure 6.1: Graph of Software Assets and their Interconnections

In order to calculate the asset vulnerabilities for each chain in the graph, we must first identify
each chain by employing graph traversal algorithms. Techniques such as Depth-First Search
(DFS) or Breadth-First Search (BFS) can be utilized to explore and enumerate every possible
path between the software assets. Following the identification of these chains, the next step
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involves calculating the asset vulnerabilities. This is achieved by using the Cartesian product
for each asset within the paths. By combining every possible pairing of assets, we can
thoroughly analyze and understand the potential vulnerabilities that may arise from different
interactions between software components. This methodical approach ensures a complete
and nuanced assessment of risks throughout the network.

Consider two interconnected software assets, SWa and SW, each with their own sets of
vulnerabilities. Let's say SWa has vulnerabilities
{CVE — 0001, CVE — 0002, .., CVE — 000n}and SWp has vulnerabilities
{CVE — 0001, CVE — 0002, .., CVE — 000mj}.

The Cartesian product of the asset vulnerabilities of SWaxSWB, denoted as
{(CVE — 0001, CVE — 0002), (CVE — 0001, CVE — 000m), ... (CVE — 000n,CVE — 000m)}
involves pairing each vulnerability of SWa with each vulnerability of SWb. This results in a set
of ordered pairs, where each pair consists of one vulnerability from SWa and one from SW.

Experimentation and Validation: This section delves into the evaluation process of the
proposed methodology for assessing software asset vulnerabilities using graph traversal
techniques that have been implemented. We outline the experimentation setup, describe the
computing infrastructure used for model deployment, and discuss the specific data utilized in
our experiments. Additionally, we detail the implementation adjustments made for efficient
data handling and processing.

Experimentation Setup

The experiments were conducted on the High-Performance Computing (HPC) infrastructure
of the Grid5000 supercomputer. Grid5000 is a large-scale and versatile testbed, providing
access to a substantial amount of resources distributed across multiple sites in France. This
infrastructure is ideal for demanding data processing tasks and was leveraged to deploy and
evaluate our model effectively.

Data Description

For our experiments, we utilized data stored in tables from an RDBMS, specifically designed
for this study and referred to as the OLISTIC DB (explained in more detail in deliverable
D4.3). The key tables used include:

Table 6.3: Experimentation Data Utilized

Table Name Description Number of Records

Asset Asset information 417
including type (software,
hardware, peripherals,
network), CP23 name,
and Fully Qualified
Domain Name (FQDN)

AssetAssetRelationship Describes the 326
interconnections between
assets
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AssetRelationship Specifies the types of 379
relationships between
interconnected assets

Vulnerability Details on vulnerabilities 229017
including name, access
complexity, access vector
(LOCAL/NETWORK),
availability impact, CVSS
version, CVSS score, brief
description, exploitability
score, and impact score

VulnerabilityV31 Updated vulnerability 112968
details following CVSS
v3.1 standards, including
name, attack complexity,
attack vector
(LOCAL/NETWORK),
availability impact, and
other relevant info

In Table 6.3, the data that was instrumental in forming the dataframe for constructing the
graph of software assets can be described.

The constructed graph, derived from the OLISTIC database, features 13 distinct entry points /
initial assets. These entry points serve as the starting locations for the graph traversal
algorithm. From these initial positions, a total of 2,954 chains were discovered. Each chain
comprises up to 16 assets, demonstrating the complexity and interconnected nature of the
assets represented in the graph. This structure facilitates a comprehensive analysis of
potential vulnerabilities within the network, leveraging the detailed interconnections mapped
out through the data.

Implementation Details: In the execution phase, instead of performing relational queries
directly within the Olistic DB, we employed Spark SQL. This approach allowed us to execute
the necessary operations efficiently during the graph traversal process. By leveraging Spark
SQL, we were able to handle large volumes of data seamlessly and expedite the computation
of asset vulnerabilities throughout the software chains.

The experimental phase involved several key activities (see D4.3):

1. Graph Construction: We first constructed a graph representing the software assets
based on data extracted from the OLISTIC DB.

2. Graph Traversal: Using graph traversal algorithm, we explored the graph to identify
distinct chains of software assets, initiating the traversal from specified entry points or
indices.

3. Vulnerability Simulation and Analysis: For each identified software chain, we
simulated asset vulnerabilities by assuming that each asset could have a variable
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number of vulnerabilities, ranging from 1 to n. This simulation used a pool of real
vulnerabilities sourced from Common Vulnerabilities and Exposures (CVE) listings.

About CVEs

The Common Vulnerabilities and Exposures system catalogs publicly known security
vulnerabilities. Each record in this catalog has a unique identifier and includes details such as
a brief description and, when possible, remediation steps. This catalog is acknowledged
across the security field, making it suitable for authentic simulations in security studies.

For our experiments, we query a random set of real vulnerabilities from the CVE database to
assign an arbitrary number of vulnerabilities (from 1 to n) to each asset in the software
chains. This approach ensures that our vulnerability assessment is grounded in real-world
scenarios, enhancing the relevance and applicability of our findings.

An example for the described procedure is:

Let A be a set representing all assets in a software chain, such that: A = {a1'a N S am}

23
where m is the total number of assets in the chain.

For each asset a in 4, let Vi be the set of vulnerabilities associated with a. The number of

vulnerabilities of each asset a, can vary from 1 to n. Thus, we can define Vl, as:

Vl, = {Uil' Vo Vg oo vik} where k is the number of vulnerabilities for asset a, and1 <k < n.

2

Given that you are interested in exploring every possible pairing of vulnerabilities across
different assets to thoroughly analyze potential interactions and risks, the mathematical
representation using the Cartesian product would be: le V2 X X Vm where each

element of the Cartesian product represents a tuple: (vm, Uy g vmjm) with v, being a

vulnerability of asset a.

Results

This section outlines the outcomes of the scalability and application-specific experiments
conducted to assess the performance of our methodology.

We conducted scalability tests using different configurations of executors to evaluate how the
system performs under varying loads. These tests involved configurations with 1, 4, 8, 10, 20,
30, 40, 50, 60, 70, and 80 executors, each equipped with 8 GB of memory and 2 CPU cores.
This diverse range of settings allowed us to systematically measure the impact of resource
allocation on the performance of our graph traversal algorithms across extensive asset
networks.

Two distinct experiments were performed to validate the application’s effectiveness in
different scenarios:

e Full Graph Analysis: In this experiment, the entire graph was analyzed starting from
all entry points (traversing all 2,954 chains). Each asset in the graph was assigned
three vulnerabilities. This comprehensive approach tested the model’s capacity to
handle large datasets and complex interactions simultaneously.
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e Targeted Path Analysis: The second experiment focused on targeted path analysis,
starting from three specific entry points. This approach utilized 22 chains for
assessing exploitability, with each asset along these paths having five vulnerabilities.
This experiment aimed to simulate a more focused attack scenario, testing the
system’s ability to identify and evaluate vulnerabilities in a constrained yet critical
subset of the network.

In Table 6.4 we present the execution times for both the full graph analysis and the targeted
path analysis experiments in a clear and concise manner.

Table 6.4: Execution Time

Executors Full Graph Execution Time (s) | Targeted Path Execution Time (s)
1 1053.27 75.12
4 380.19 82.81
8 216.86 62.49
10 461.91 60.93
20 627.80 68.49
30 638.65 71.85
40 463.14 73.63
50 394.04 77.63
60 740.81 84.64
70 334.10 90.05
80 382.30 97.31

The execution times for both the full graph analysis and the targeted path analysis
experiments are also depicted in Figure 6.2.

time

time (s)

executors

Figure 6.2: Visual Representation of Execution
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6.4 Pilot 4: Complex geomorphometric models executed over Scope:
High-precision, multi-factor models using earth observation data for

groundwater estimation and very large data volumes management
State-of-practice: Geomorphometric models perform a number of operations on Digital
Elevation Maps (DEMs) in order to calculate factors like hydrological flow directions and
water pooling and produce the relevant maps. The construction of a workflow able to produce
high-precision results requires the combination of different actions with significant
computational load, that involve fluid dynamics and thus require Computational Fluid
Dynamics (CFD) methods to be solved. The pre-REGALE implementation of the groundwater
estimation and management service operates over relatively small land areas and uses the
single-threaded implementation of the Open-geomorphometry toolset. While it produces
sufficiently accurate results, its performance can be significantly improved by being able to
handle larger land areas, and - on the usability side, being able to quickly run different
configurations of the service by fine-tuning the execution parameters and customizing the
classification settings for different areas.

REGALE value proposition: The aforementioned barriers to provide high-precision
groundwater estimation services can be overcome via the solutions provided by REGALE,
and exploited in the context of agricultural operations, environmental research and policy
making. Specifically, in the context of REGALE, we aim to:

e Increase the capability of the system with respect to the analysis of digital elevation
maps that can be feasibly used as input to the described models

e |Increase coverage, that is the land area that can be covered in acceptable
computation times

e Optimize workflow execution in terms of data processing, intermediate result
production and transferring and inter-process communication in the context of the
service.

Evaluation scenario: The assessment of the benefits obtained via the usage of REGALE
solutions will focus on two aspects affecting the quality of the system: response times for a
single workflow, and ability to run multiple workflows with different configurations. On the first
part, the core metric to be used is the time to completion of the workflow. The baseline will be
the time to completion achieved in the execution on a local small-scale server (32 GB of
memory, 16 cores), for maps of three different sizes. For the second part, connected to the
usability of the system, the metric that will be used is the time of configuration, deployment,
and execution of at least 3 different configurations of the service for a given map. The
selection of the map for the second evaluation branch will depend on the results observed for
the first part. A map where the execution time benefits were relatively smaller will be
selected, to better estimate the gains from using RYAX for managing and configuring the
execution of the different workflow configurations.

Experimental Results: Our experiments were conducted on a DEM from Epirus, an area in
north-west Greece.
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Figure 6.3: Initial DEM file from Northwest Greece

The original DEM (Figure 6.3) had a resolution of 3600x3600 pixels (~13 million pixels),
covering more than 7.000 km?. In order to evaluate how the increase in data points affects
the total execution time of the algorithm and how the use of parallelizing techniques speed up
the process, experiments with various sub-areas were conducted with incremental size. Table
6.5 shows 5 cases that were processed along with their calculation time for each of the three
components of the Geomorphometry tool.

Table 6.5: Cases considered

Sub area | Resolution # of FlowMapR | FormMapR | FacetMapR | FacetMapR

pixels (s) (s) (s) (NO (s) (Spark)
spark)

Epirus 1 72x110 7920 234.5 560.3 217.8 36.8

Epirus 2 179x186 33294 1915.5 1661.2 918 153.8

Epirus 3 159x337 53583 3865.9 2624.3 1415.5 219.3

Epirus 4 265x339 89835 4960.1 3512.4 2392.3 354.1

Epirus 5 | 450x450 | 500500 | 166224.68 | 4417.96 | 11324.53 | 731.48

All five of the extracted DEMs were processed in the pipeline by FlowMapR and FormMapR
to collect the necessary features for the last part. FacetMapR processed the outputs of the
previous components in two distinct settings, namely with or without Spark. By enabling
Spark, the algorithm is able to harvest the power of all the present CPU cores and distribute
independent parts of the workload to other computation nodes of the network to further
increase the processing power. It must be noted that the execution time is not only
dependent on the size of the DEM but also on its unique landscape and characteristics. A
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more complex landscape of a smaller resolution input file might exhibit processing time
similar to a higher resolution input file that represents a simpler landscape. Figures 6.4-6.8
show the four cropped areas while Figure 6.9 shows all the DEMs overlayed in one image.

Figure 6.4: Epirus 1 area (72x110)

Figure 6.5: Epirus 2 area (179x186)
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Figure 6.6: Epirus 3 area (159x337)

Figure 6.7: Epirus 4 area (265x339)
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Figure 6.8: Epirus 5 area (450x450)

Figure 6.9: All DEM areas overlayed for easier comparison between them.
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Furthermore, we examined different parallelisation configurations for the biggest use case
(Epirus 5), to assess the scalability of the solution as available hardware resources increase.
FacetMapR was executed over 1, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110
execution nodes, with the obtained results in execution time and speed up summarised in
Figures 6.10 and 6.11.

time (s)

30 60 a0

executors

Figure 6.10: FacetMapR execution time relative to the number of available execution nodes

a0-

speedup

30-

6 E-ID 5.9 9IEI
executors

Figure 6.11: FacetMapR speedup relative to the number of available execution nodes

Another important, non-quantitative aspect pertaining to the overall performance gains via
the adoption of REGALE solutions for the tool, is the ability to simultaneously run different
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workflow configurations for the same map (Figure 6.12). Through the RYAX platform, multiple
executions on the same input data (flow and form outputs) but with different hyperparameters
(crule, arule etc.) can be run in parallel instead of sequentially, thus eliminating the need of
waiting for their serial execution and therefore needing essentially the sum of the different
execution times to properly assess the best solution for a given estimation problem.

<t
<<t

Figure 6.12: Workflow definition with different configurations for concurrent execution

6.5 Pilot 5: Design of car bumper made of carbon nanotube reinforced
polymers

Scope: Improve performance of stochastic optimization algorithms in complex multiscale
models.

State-of-the-practice: The goal of this pilot is to design an innovative car bumper made of
carbon nanotube (CNT) reinforced polymers. To achieve this, an optimization problem needs
to be solved, where the goal is to find the optimal weight fraction of CNTs and/or their
orientation (design variables for the problem) within the polymeric matrix that will lead to
enhanced crashworthiness of the part. In addition, the problem is formulated in a stochastic
setting, where the randomness in the material properties and the loading conditions is taken
into account for a more rational design. The solution to this stochastic optimization problem
requires the generation of a large number of instances for the design variables and for each
one, a separate Monte Carlo simulation needs to be performed in order to evaluate the
statistics of the response of the bumper in crash scenarios.

The aforementioned solution framework for this pilot application has been conceptualized but
its implementation has never been attempted before the REGALE project. The reasons for
this are:
e The immense computational requirements for performing massive numbers of model
simulations, with each simulation taking several hours to complete.
e The data storage and processing requirements for computing the statistics of the car
bumper’s response at each time instance of the crash simulation.

REGALE value proposition: The REGALE project offers solutions at multiple levels in order
to overcome the computational barriers associated with this pilot application. Specifically, the
REGALE tools facilitates the integration of various modules (e.g. monitors, node managers,
job managers) with our in-house code for an efficient deployment on supercomputers and
ensures the optimal resource allocation for our application, while maximizing throughput. In
this direction, the Melissa workflow manager provides a means of performing ‘on-the-fly’
computation of statistics for the problem’s response, thus drastically reducing the storage
requirements and the cost for data processing.
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Evaluation scenarios: To assess the benefits offered by the REGALE project, we focused
on two scenarios.
e Scenario 1: Execution on a single node vs Execution on a supercomputer
o Baseline: The time to completion achieved in the execution on a single core
(from a node consisting of 1 CPU Intel Xeon Gold 5220, 18 cores/CPU, 96GB
RAM).
o KPI: Application speedup. The system throughput (jobs/hr) for the execution
on a single core and the execution on a supercomputer using multiple nodes
will be compared.

e Scenario 2. Execution on a supercomputer with Melissa vs without Melissa workflow
manager.

o Baseline: The time to completion and the storage requirements for the pilot
without the integration of the Melissa workflow manager.

o KPI 1: Application speedup. The time to completion with and without Melissa
will be compared.

o KPI 2: Storage requirements. The reduction in the storage requirements
through the use of Melissa will be evaluated.

o Developer experience on Programmability: The ease of coupling the Melissa
workflow manager with our in-house software will be assessed in a qualitative
manner.

Experimental Results: The experiments involved two computational models, (i) a simple
bumper model (Figure 6.13) that consists of 15402 displacement unknowns (system of 15402
linear equations), which was solved for 50 time increments and (ii) a more sophisticated
bumper model (Figure 6.14) that consists of 658446 displacement unknowns (system of
658446 linear equations), which was solved for 20 time increments.

Figure 6.13: Finite element mesh of the first bumper model (15402 unknown variables)

gy
[
gy

Figure 6.14:Finite element mesh of the second bumper model (658446 unknown variables)
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For both bumper models, the stochastic optimization analyses required 50 optimization steps,
where at each of these steps a population size of 10 was considered. To evaluate the fitness
function at each optimization step, an additional Monte Carlo (MC) simulation was performed
using 100 samples. Therefore, the total number of model runs required to derive the optimal
material microstructures that would lead to enhanced crashworthiness was

50 (No. of optimization steps) X 10 (population size) X 100 (MC samples) = 50000 model runs

However, each model run required 3103,7 sec on a single core of a node for the first bumper
model and 38520,8 sec for the second bumper model. It becomes evident that performing
these types of analyses on a single machine would be computationally prohibitive. For this
reason, we deployed our code on the Grid5000 supercomputer
(https://www.grid5000.fr/w/Grid5000:Home) to accelerate the solution process through
multi-node scheduling. Specifically, we used the “Gros” cluster, which consists of 124 nodes
(1 CPU Intel Xeon Gold 5220, 18 cores/CPU, 96GB RAM, 447GB SSD, 894GB SSD, 2 x
25Gb Ethernet). In addition, to further reduce the cost, we utilized the Melissa workflow
manager, which reduces the cost of the statistical post-processing in each of the MC
simulations, as well as the data storage requirements.

The performance evaluation results are presented in Table 6.6 for the first bumper model and
in Table 6.7 for the second.

Table 6.6: Performance evaluation for the first bumper model

Computational cost (wall-clock time)
Single core Distributed Speedup (wrt Distributed Speedup (wrt
-without single core) -with Melissa distributed
Melissa (100 (100 nodes architecture
nodes with 18 with 18 cores) without
cores) Melissa)
One model run 3103.7 sec - - - -
One MC 311983 sec 3261.5 sec x95.66 2912.1 sec x1.12
simulation (100
model runs +
statistical
post-processing)
One stochastic 3119830 sec 3472.8 sec x898.36 3073.3 sec x1.13
optimization step (estimate)
(10 concurrent
MC simulations)
Total Analysis 43331 hrs 48.3 hrs x897.12 43.1 hrs x1.12
time (50 (estimate)
optimization
steps)
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Table 6.7: Performance evaluation for the second bumper model

Computational cost (wall-clock time)
Single core Distributed Speedup (wrt Distributed Speedup (wrt
-without single core) -with Melissa distributed
Melissa (100 (100 node with architecture
nodes with 18 18 cores) without
cores) Melissa)
One model run 38520.8 sec - - - -
One MC 1284 hrs 43521.3 sec x106.21 20724.3 sec x2.10
simulation (100 (estimate)
model runs +
statistical
post-processing
One stochastic 12840 hrs 45012.6 sec x1027 21935.8 sec x2.05
optimization (estimate)
step (10
concurrent MC
simulations)
Total Analysis 642000 hrs 625.18 hrs x1027 306.5 hrs x2.04
time (50 (estimate)
optimization
steps)

As evidenced from the tables above, this work meets REGALE Strategic Objective SO1.1
Improved application performance with the speedup achieved for the first application being
x897.12 and x1027 for the second. These numbers were close to theoretical values predicted
by Gustafson’s law since every optimization step is embarrassingly parallelizable. It is also
interesting to notice that an additional speedup of x2.04 can be achieved for the second test
case when using the Melissa workflow manager. This case has significant 1/0 read-write
costs, while the statistical post-processing of the results during the MC simulation was also
expensive. In this regard, Melissa proved very helpful at reducing these costs. On the other
hand, the speedup offered by Melissa for the first test case was only x1.12, which is a
reasonable value since the I/O communication and statistical post-processing costs are very
small compared to the model evaluation cost for this less complex case. In terms of the
storage requirements for the two applications, it is worth mentioning that a significant
reduction was achieved with Melissa. In particular, for the second application, which was the
most intensive, without Melissa each optimization step needed 106 GB for storing the data
that would be later processed to extract the relevant statistics. However, with the use of
Melissa the storage requirements were reduced to merely 0.2GB as the statistics were
computed ‘on-the-fly’ and there was no need to store most of the analysis results.
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7. REGALE sophistication

7.1 Multi-node co-scheduling

The state-of-practice in HPC resource allocation assumes entire CPUs (or NUMA nodes) to
jobs. This leads to scalability issues for a large class of HPC applications that are memory
constrained. Co-scheduling comes as a remedy to this problem by spreading memory-bound
applications to more nodes (in the current setup doubling the size of nodes) and pairing
(co-locating) them with other applications that are not memory bound and thus can
synergistically co-exist with memory bound applications on the same CPU. Moreover,
spreading HPC jobs in a large scale system to more nodes also changes the communication
behavior, which may also have an impact on the overall performance. This ends up with jobs
sharing nodes of the supercomputing system.

In our first set of experiments, we aim to study the potential of co-scheduling and measure
the impact (speedup or slowdown) of applications being co-located on the same nodes for a
specific amount of time. Based on these results, in our second set of experiments we
simulate the co-scheduling of various application workloads and compare the results with the
default “compact” policy. In our third set of experiments we test our adaptation of the OAR
scheduler to support a version of co-scheduling in a small-scale system.

Results of application co-location: the potential of co-scheduling

We executed co-location experiments on the three machines described in Table 7.1. We
utilized the two most popular benchmarks for parallel computing, i.e. the NPB® and SPEC?®
benchmark suites. We formulated several co-locations in each two benchmarks as follows:

- Benchmarks A and B are placed sharing the same node (the first half of all the cores
of each CPU are assigned to benchmark A and the second half to benchmark B)

- The co-location lasts for 10 minutes during which if a benchmark finishes, it is
restarted.

- We mix benchmarks of different process counts. This means that if a benchmark of x
processes is co-located with a benchmark of x/n processes, the second benchmark is
placed n times side-by-side with the first benchmark.

- In all cases we make sure that the initialization time (for job submission and MPI
initialization) is kept low compared to the total experiment time.

- For each simulation we report the speedups of the involved jobs compared to the
baseline (compact) placement

Table 7.1: Machines used for co-location

Supercomputer ARIS Marconi Grid5000
(DAHU/GRVINGT)
Processor Type Intel Xeon E5-2680v2 | Intel Xeon 8160 Intel Xeon Gold 6130,

(Ivy Bridge), 2.8 GHz (SkyLake), 2.10 GHz 2.10 GHz

Processors per 2 2 2
Node
Cores per 10 24 16

5 https://www.nas.nasa.gov/software/npb.html
6 https://www.spec.org/hpc2021/
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Processor
Cores per Node 20 48 32
Hyperthreading OFF OFF OFF
Memory per Node 64GB 196 GB 192 GiB
Network Infiniband FDR, 56 Intel Omni-Path, 100 Intel Omni-Path, 100

Gb/s

Gb/s

Gb/s

Figures 7.1 - 7.5 show heatmaps of speedups of each benchmark when co-located with each
one of the other benchmarks in the suite. In particular, Figure 7.1 focuses on a wide mix of
small to medium sized jobs also mixed in different process count configurations. The fact that
the majority of the collocations led to job speedups with an average of 1.13 provides the first
strong evidence that co-scheding can be beneficial. Figure 7.2 provides the same information
for the SPEC benchmarks suite demonstrating that the benefit of co-location was not an
artifact of the NAS benchmarks suite but seems quite frequent among HPC applications.
Figure 7.3 shows the results of larger jobs of 2048 MPI processes on the ARIS system which
actually span almost the entire machine. Given the same positive picture, this experiment
showcases that at least for this machine, jobs do not seem to slow down when they are
spread in the interconnection network on this machine.

bt.D.256 1.04
bt.D.484 1.04
bt.E.1024 1.04
cg.D.128 1.01
cg.E.1024 1.26
cg.E.512 1.33
ep.E.256 1.00
ep.E.512 0.99
ft.D.256 1.36
ft.E.1024 1.38
ft.E.512 1.41
lu.D.128 1.13
lu.D.256 1.11
Iu.E.1024 1.12

1.02
1.04
1.10
1.01
1,22
1.34
1.01

1.35
1.01
1.00
1.34

1.00
S5
1.39
1.42
1.1

1.41
1.12
111 110
1.12
WES512 113 1.13
sp.D.121 151 1147
sp.D.256 1.34
sp.D.484 1.21
sp.E.1024 1.49

1.14

1.31
1.22

1.28

b, bp, b, [
Lo, o le, 80 &
.356 .42 70 ?q “7 e&

1.01
1.04
1.05
0.95
1.08
1.22
0.99
0.99
1.31
s
1.36
1.11
1.11
1.13
113
1.47
1.32
1.24

NAS:NAS heatmap in aris.compute
average =1.13

1.01 1.00 1.09 1.08 0.98 0.97 0.99 096 0.99 0.99 0.98 0.78 0.90 0.93 0.88 0.98 1.8
1.02 1.10 1.10 0.96 1.01 0.93 0.98 1.00 0.81 0.91 0.95 0.99
1.07 1.06 1.11 1.16 096 1.05 099 095 0.98 1.05 1.03 0.89 0.92 1.03 16
0.94 0.96 1.14 1.13 0.94 0.92 0.94 1.00 1.00 0.97 0.97 0.70 0.82 0.88 0.76 0.95
0.92 1.08 |1.42 '1.39 1.00 1.15 0.97 0.97 1.16 1.26 1.11 0.71 0.88 0.85 1.09
1.18 0.93 [1.48 149 1.12 1.16 1.11 1.23 1.23 1.28 1.23 0.70 090 1.06 0.86 1.17 14
1.00 1.00 1.01 1.01 0.98 1.01 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 0.99 1.00
1.00 0.99 1.00 1.00 0.98 1.00 1.00 0.99 0.99 1.00 1.00 0.96 0.98 0.99 0.99 0.99 =12
1.26 1.29 (144 144 1.06 1.25 1.24 133 1.32 133 132 1.11 1.19 1.22 1.22 1.28
1.26 1.26 -\ﬂ 1.10 1.12 1.11 EESSHRESEN NESEY RS 1.06 1.15 1.17 1.28 =1
132 1.32 -n 1.28 1.27 1.04 137 137 137 136 1.08 1.18 1.24 1.16 1.31
111 111 115 1.16 1.11 1.10 1.09 1.09 1.10 1.09 1.09 0.95 1.02 1.05 1.00 1.09 —08
1.10 1.09 1.16 1.16 1.09 1.10 1.08 1.07 1.07 1.09 1.08 0.92 0.99 1.04 0.99 1.08
1.12 1.11 1.16 1.16 1.06 1.08 1.07 1.06 1.10 1.10 1.08 0.95 1.01 1.02 1.08
1.13 1.12 1.15 1.15 1.10 1.12 1.08 1.10 1.09 1.11 1.09 0.96 1.03 1.06 1.02 1.10 0
5] 122 ) R 1) e (138 ) 1) 1ad) 1139 1.02 1.5 125 1.09 1.39
1.27 1.25 (142 (143 1.28 1.27 1.24 1.22 1.26 1.25 1.24 090 1.03 1.14 0.99 125 04
1.20 1.32 1.32 1.10 1.16 1.08 1.14 1.16 0.85 1.00 1.07 1.15
- 1.47 1.42 1.40 1.29 1.37 1.36 1.22 1.35 1.44 1142 0.95 1.10 1.05 1.36 0.2
s.,agses,?ee;“esgaesje,,,e";es,}a,effqesfg .,OZes,j‘la,jf-aequqjjf.,oeq e
Figure 7.1: Co-location results (speedups) for the ARIS machine, NPB
53 01.05.2024

REGALE - 956560



D1.4 REGALE evaluation

SPEC:SPEC heatmap in aris.compute
average = 1.14

605.lbm_s.1024 1.00 0.85 0.84 0.80
613.soma_s.1024 1.37 1.07 1.01
618.tealeaf_s.1024-- 1.18 1.07
619.clvleaf_s.1024 1.68 1.37 1.13 1.03

621.miniswp 5.1024  1.02 0.86 0.93 0.91
628.pot3d_s.1024 1.30 1.05 0.95
634.hpgmgfvs.1024 122 0.99 077 0.70
635.weather 51024 1.12 1.03 0.94 091 112 0.92 1.05 1.00 1.01
0.2
60 7 67 6. 2, 6; 63 avg
S, 3, 1 2, S,
% %o ‘s Yo, Vi “ozg e, ®
Y/ s, s U S %s,, n he,
2g 0 70 7024 8.7 0, g 3 70 NS, 02,
Figure 7.2: Co-location results (speedups) for the ARIS machine, SPEC
ALL:ALL heatmap in aris.compute.big
average = 1.11
1.8
bt.E.2025 1.05 1.06 1.05 1.02 097 1.03
1.6
14
€g.E.2048 1.19 0.92 0.86 117 1.03 1.03
-1.2
t.E.2048 1.26 1.14 1.16 1.23 115 1.19 -1
-08
1u.E.2048 1.12 1.11 111 113 1.03 1.10
0.6
0.4
$p.E.2025 1.23 1.24 1.23 1.18 1.06 1.19
02
bt.E.2025 cg.E.2048 ft.E.2048 u.E.2048 sp.E.2025 avg

Figure 7.3: Co-location results (speedups) for the ARIS machine, NPB, large jobs

REGALE - 956560 54 01.05.2024



D1.4 REGALE evaluation

NAS:NAS heatmap in marconi
average = 1.14

1.8
bt.D.256  1.14 1.12 0.91 0.85 0.89 114 0.88 0.91 0.98
1.6
ep.E256  0.98 0.98 0.99 0.97 0.99 0.98 0.99 0.99 0.99
~-1.4
ft.D.256  1.26 1.33 0.97 1.12 M 1.22 1.07 1.08 1.14
=12
ft.E256  1.38 1.43 1.43 0.98 1.30 1.37 1.18 117 1.28
-1
is.E.256  1.40 - 1.29 1.15 1.05 1.35 1.10 112 1.25
-0.8
u.D.256  1.23 1.07 114 1.05 1.03 1.23 0.94 0.91 1.08
~0.6
mg.E256  1.11 1.26 1.33 1.27 1.31 1.42 1.03 1.09 1.23
04
sp.D.256  1.39 1.65 1.11 1.02 1.22 1.36 0.97 1.00 1.22
02
bt.D.256  ep.E.256  ft.D.256 ft.E.256 is.E.256 luD.256  mgE256  sp.D.256 avg
Figure 7.4 Co-location results (speedups) for the MARCONI machine, NPB
NAS:NAS heatmap in iccs-g5k.nancy.grvingt
average = 1.05
1.8
bt.C.64 1.00 0.96 0.96 1.02 1.02 0.96 0.98 0.90 0.90 1.00 0.97
cg.D.32 117 1.02 1.03 1.21 2223 1.03 1.04 0.88 0.90 1.12 1.06 1.6
cg.D.64 121 1.01 1.01 1.26 1.26 0.98 1.08 0.88 0.93 1.14 1.08 —1.4
ep.D.32  0.98 0.93 0.94 0.99 1.00 0.95 0.97 0.91 0.90 0.94 0.95
-12
ep.D.64 0.9 0.95 0.95 1.01 1.02 0.98 0.97 0.90 0.90 0.98 0.96
-1
ft.D.32  1.06 1.01 1.02 1.08 1.10 0.95 1.01 0.96 0.94 1.04 1.02
-038
ft.D.64 112 1.04 1.06 1.14 1.15 1.04 0.95 0.98 0.98 1.09 1.06
mg.D.32 1.29 1.20 1.22 1.37 1.36 - 1.20 0.99 1.06 1.23 1.25 —0.6
mg.D.64 123 1.20 1.20 1.27 1.30 1.12 1.16 0.99 1.03 1.20 1.17 0.4
sp.C.64 1.02 0.95 0.97 1.04 1.04 0.96 0.97 0.88 0.90 1.00 0.97 02
bt.C.64 cg.D.32 cg.D.64 ep.D.32 ep.D.64 ft.D.32 ft.D.64 mg.D.32 mg.D.64 sp.C.64 avg

Figure 7.5: Co-location results (speedups) for the Grid5000 machine

Figures 7.4 and 7.5 demonstrate results from the other two machines. As for Marconi, a next
generation machine compared to ARIS, the results are similar, demonstrating that the
evolution of technology (larger core counts, faster interconnects) did not impact the behavior
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of co-location and the potential of co-scheduling. Finally, the results with small-scale jobs on
the Nancy machine of the Grid5000 infrastructure for small jobs show lower potential for
co-scheduling, nevertheless again a positive prospect. Since we are granted root privileges in
the Nancy machine, we will be using it to validate the co-scheduling adaptation we integrated
in OAR (and described in Deliverable D2.3).

Results of co-scheduling simulation

In this set of experiments we utilize the heatmaps of the previous experiments and simulate
the behavior of a co-scheduling heuristic algorithm for a large number of jobs. The simulation
infrastructure was created for the needs of the REGALE project and is described in Appendix
A. In each scenario we select a number of jobs from the NPB and SPEC benchmarks and
execute multiple experiments on different machines. The heuristic algorithm assumes the
existence of the heatmap presented in the previous paragraph. An approach to predict this
heatmap is presented in Deliverable D2.3. For each simulation we report the speedups of the
involved jobs compared to the baseline (compact) placement and makespan (total time to
execution of the entire job set).

Figures 7.6 and 7.7 show the results of simulation for the two machines ARIS and Marconi
respectively. Similar results were obtained with alternative configurations in the number of
experiments and jobs. We may observe that even the random co-scheduling approach can
provide a non-negligible makespan (throughput) improvement of 6-8% and with the more
sophisticated co-scheduling heuristic we can reach a throughput improvement of 15% in
ARIS and 42% in Marconi. This validates the accomplishment of the project objective of more
than 15% throughput improvement as shown in Table 3.1.
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Figure 7.6: Simulation results for co-scheduling (Machine: ARIS, Number of experiments:
50, Number of jobs per experiment: 100, Co-scheduling algorithms: Random, Heuristics,
Collected data-points: 10000)
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Figure 7.7: Simulation results for co-scheduling (Machine: Marconi, Number of
experiments: 50, Number of jobs per experiment: 100, Co-scheduling algorithms: Random,
Heuristics, Collected data-points: 10000)

Results with OAR

In this final set of experiments we present the results of compact scheduling, random
co-scheduling and “heatmap-aware” co-scheduling as implemented in OAR and described in
Deliverable D2.3. In the latter case the applications are tagged by the user based on their
behavior presented in Figure 7.5 and the results are shown in Figures 7.8 and 7.9. We may
notice again that even random co-scheduling is able to reduce the makespan of the
execution and the heatmap-based selective policy is able to provide additional benefits.
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Figure 7.8: Speedup over compact for the spread and heatmap-aware policies with OAR.
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50 job Gantt under Compact Policy - Makespan: 0:51:43
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Figure 7.9: Compact, random co-scheduling and “heatmap-aware” co-scheduling with
OAR. A dataset of 50 jobs from Grid5000-Grvingt Heatmap with equal selection (5 times)
randomly distributed across the dataset, run under Grid5000-Dahu.
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7.2 GPU co-scheduling

Scope: We target here job co-scheduling on compute nodes with GPUs, where each node
GPU can be set to run different jobs. The expected benefit is a better usage of GPU
resources, in terms of both device memory bandwidth and floating-point units. We test
different co-location strategies, the most advanced one being based on reinforcement
learning. For sharing a GPU between jobs we utilize the MPS and MIG features available for
modern NVIDIA GPUs. The maijor objective of this sophistication is to improve throughput by
30% (S0O2).

Workloads: We utilize the Rodinia benchmark suite, Stream/Random access benchmarks,
and the Quicksilver mini application from CORAL benchmark suite. These well represent
modern GPU workloads in the scientific computing area. We classify these benchmark
programs into Cl (Compute Intensive), Ml (Memory Intensive), and US (UnScalable) as
shown in the following table:

| Class | Benchmarks |

lavaMD, huffman*, hotspot3D, hotspot*, heartwall*,
bt_solver_A, bt_solver_B, bt_solver_C
lud_A, lud_B, lud_C*, sp_solver_A, sp_solver_B,
sp_solver_C, randomaccess, cfd*, gaussian®, stream
kmeans, dwt2d, needle*, pathfinder, backprop*,
qs_Coral_P1, gs_Coral_P2, gs_NoFission*, qs_NoCollisions

CI

MI

usS

We test our approach using different types of job mixes composed of the above programs:
(1) Cl-dominant; (2) MI-dominant; (3) US-dominant; and (4) Balanced. The exact job mix
selections are as follows. Note the programs marked with * are unseen in the training phase
of our approach.

| Category | Name || Jobs |
huffman*, bt_solver_C, bt_solver_B, hotspot3D,
Q1 heartwall*, lavaMD, lud_B, cfd*, sp_solver_B,

pathfinder, needle*, qs_NoFission*
bt_solver_C, heartwall*, lavaMD, huffman®*, hotspot*,
CI-dominant Q2 hotspot3D, cfd*, sp_solver_C, gaussian*, pathfinder,
needle*, qs_Coral_P1
huffman®*, bt_solver_C, hotspot3D, hotspot*,
Q3 heartwall*, lavaMD, lud_B, stream, sp_solver_C,
gs_NoFission*, pathfinder, needle*
bt_solver_B, heartwall*, bt_solver C, lud_B,
Q4 gaussian*, sp_solver_B, cfd*, sp_solver_C, stream,
gs_NoCollisions, pathfinder, qs_Coral_P2
heartwall*, hotspot*, bt_solver_B, lud_B, gaussian*,
MI-dominant Q5 randomaccess, stream, lud_C*, sp_solver_B,
gs_Coral_P2, dwt2d, gs_Coral_P1
bt_solver_C, huffman*, lavaMD, sp_solver_B,
Q6 gaussian®, randomaccess, lud_C*, stream, cfd*,
gs_NoFission*, needle*, gs_Coral_P1

(CIx6, MIx3,
USx3)

(CIx3, MIx6,
USx3)
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heartwall*, hotspot*, hotspot3D, gaussian®, stream,
Q7 lud_B, pathfinder, gs_NoFission*, gs_Coral_P2,
backprop*, gs_NoCollisions, dwt2d
bt_solver_C, hotspot3D, lavaMD, stream, cfd*, lud_B,
US-dominant Q8 gs_Coral_P1, needle*, kmeans, qs_Coral_P2,
gs_NoFission*, gs_NoCollisions
lavaMD, hotspot3D, hotspot*, sp_solver_B, lud_C¥*,
Q9 randomaccess, gs_Coral_P1, dwt2d, kmeans, needle*,
gs_NoCollisions, gqs_Coral_P2

(CIx3, MIx3,
USx6)

lavaMD, huffman*, hotspot3D, bt_solver_C, lud_C*,
Q10 lud_B, stream, sp_solver_C, gs_NoCollisions,
needle*, pathfinder, gs_Coral_P1
huffman®*, hotspot3D, hotspot*, bt_solver_B, cfd*,
Balanced Q11 lud_C*, stream, gaussian*, gqs_Coral_P2, needle*,
pathfinder, dwt2d
lavaMD, hotspot*, huffman®*, heartwall*, sp_solver_C,
lud_C*, randomaccess, gaussian*, needle*, pathfinder,
gs_NoCollisions, backprop*

(CIx4, MIx4,
USx4) Ql2

Machines/platform: For our single-node evaluation, we utiize an A100-based
heterogeneous server. The details of our platform setups are as follows:

GPU NVIDIA A100 40GB PCle 250W TDP

Operating System Ubuntu 20.04.4 LTS, Kernel Version: 5.4.0-137-generic

Software CUDA Version: 11.6, Driver Version: 510.108.03, Python
Version: 2.7.18, Slurm Version: 24.08.0

Note that our approach can als run on a cluster given that root access is granted

Baselines: In our evaluation, specifically in the second scenario, we compare our approach
to the conventional exclusive scheduling method that does not involve partitioning node GPU
resources. Additionally, we evaluate our ML-based approach against several existing naive
scheduling and partitioning approaches. The following methods are specifically compared to
our approach:

Time Sharing (Baseline): Jobs in the given job mix are executed using the entire
GPU resources exclusively without co-scheduling/partitioning.

MIG Only (C = 2): Following our previous study [Arima+ICPPW'22], we test a MIG
only option with the concurrency C at 2. The job set selections and assignments are
optimal, i.e., exhaustively chosen from all the possible setups.

MPS Only (C < Cmax): We test the MPS only option with concurrency selections (C <
Cmax). The job set selections and resource assignments are determined through an
exhaustive search.

MIG+MPS Default (C < Cmax): The MIG partitioning is selected so that the average
throughput across Q1-Q12 is maximized. The MPS allocation is set to the default
mode. The job set selections (LJS ) are optimal, i.e., they are chosen through an
exhaustive search within the designated concurrency limit and configuration space.
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e MIG+MPS w/ RL (C = Cmax): Our proposed reinforcement learning-based
co-optimization of co-scheduling and hierarchical partitioning.

Metrics: Throughput, application performance, fairness

Evaluation scenario 1: Offering hierarchical partitioning functionality on RUIMS
Suppose we have GPU jobs submitted to a dedicated co-scheduling queue, and we assign
them to GPUs while accepting oversubscribing them. To this end, we co-optimize the job pair
selections from the queue as well as the GPU partitioning setups. In particular, we partition
the GPUs in a hierarchical manner using different granular partitioning knobs (e.g., MPS and
MIG). In this evaluation, we test the functionality of the hierarchical GPU partitioning we
newly augmented to the RUMS.

Evaluation scenario 2: Throughput improvement by ML-based co-scheduling and
partitioning optimization

We then demonstrate the throughput improvement by using our RL-based co-scheduling pair
selections and GPU partitioning methodology. This sophistication works as a user-level meta
scheduler that can interact with the above customized RJMS using the srun/sbatch
command. The detailed setups of the RL agent, reward function, neural network, etc. are
identical to the following paper: Urvij Saroliya, et al. "Hierarchical Resource Partitioning on
Modern GPUs: A Reinforcement Learning Approach” In CLUSTER, pp.185-196 (2023)

Experimental results (scenario1): We first perform various functionality evaluations to
check if our hierarchical GPU partitioning works. We check the following perspectives here:
(1) coarse-grained GPU partitioning functionality (via MIG feature) implemented in our prolog
script; (2) fine-grained GPU partitioning feature (MPS) works inside of each MIG partition; (3)
GPU co-scheduling tests work over these two features.

Coarse-Grained GPU Partitioning via the MIG Feature:

We configured Slurm configuration files using the GRES plugin to enable resource-wise job
scheduling, and each compute node is configured as follows:

o°
o\

$ sinfo -h -N S$partition $hostlist S$statelist -o "%N %P %C %0 %m %e
St %7 SG"

localhost debug* 0/64/0/64 3.06 1 18898 idle 2
gpu:t1000:1(S:0),gpu:al00 7g9.40gb:4(S:0),gpu:al00 4g.20gb:2,gpu:all

0 39.20gb:2

(a) “gpu:a100_7g.40gb:4” is one big MIG compute instance that occupies the whole GPU.
(b) “gpu:a100_4g.20gb:2” is a MIG compute instance that occupies 4 out of 7 GPU nodes
and 4 out of 8 memory modules.
(c) “gpu:a100_3g.20gb:2” is a MIG compute instance that occupies 3 out of 7 GPU nodes
and 4 out of 8 memory modules.

Note (b) and (c) can co-exist on the GPU at the same time, while they cannot be located
while (a) is being used. We assume the user designates one of them to launch a job using
“--gres=gpu:a100_X:Y” option where X is chosen from “a100_7g.40gb”, “a100_4g.20gb”, or
“a100_3g.20gb” while Y is set to 1-4 for “gpu:a100_7g.40gb:4” but 1-2 for the others. Y is the
number of job slots associated with the given MIG GPU partition, and if the partition runs out
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of slots, then no job can be assigned to the partition any further. This concurrent job
execution within a MIG partition is realized by use of the MPS-based fine-grained partitioning.

We submit an interactive job that executes the “nvidia-smi -L” command that lists the
available GPU(s) for the job, which depends on the selected partitioning option. As shown
below, only the requested GPU resource is assigned to the job. Note our custom prolog script
internally handles these dynamic GPU partitioning modifications.

$ srun --gres=gpu:al00 3g.20gb:1 nvidia-smi -L
GPU O0: NVIDIA Al100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%ac6acd)

MIG 3g.20gb Device 0: (UUID:
MIG-06a42a19-4578-5d99-977c-2bcfeeeld876)

$ srun --gres=gpu:al00 4g.20gb:1 nvidia-smi -L
GPU 0: NVIDIA A100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acbacd)

MIG 4g.20gb Device 0: (UUID:
MIG-9c8663c6-ffce-5255-9de8-1a7bfaeba24?)

$ srun --gres=gpu:al00 7g.40gb:1 nvidia-smi -L
GPU 0: NVIDIA A100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acocacd)

MIG 7g.40gb Device 0: (UUID:
MIG-d647ab52-bb82-5952-90b5-7dd73e4154dc)

We then co-schedule multiple GPU jobs at the same time on the GPU with several different
partitioning options. We observed the following outputs. The scheduler assigned only the
requested resources in all cases. Note, in the last two cases, the jobs are executed
sequentially as one of the co-scheduled jobs occupies the entire GPU.

$ srun --gres=gpu:al00 4g.20gb:1 nvidia-smi -L & srun
-—gres=gpu:al00 3g.20gb:1 nvidia-smi -L &
[1] 376088
[2] 376089
GPU O0: NVIDIA Al100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acocat6cd)
MIG 3g.20gb Device 0: (UUID:
MIG-06a42a19-4578-5d99-977c-2bcfeeeld876)
GPU 0: NVIDIA A100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acocac6cd)
MIG 4g.20gb Device 0: (UUID:
MIG-9c8663co-ffce-5255-9de8-1a7bfaebaz24?2)

[1]- Done srun --gres=gpu:a100_4g.20gb:1 nvidia-smi -L
[2]+ Done srun --gres=gpu:a100_3g.20gb:1 nvidia-smi -L

$ srun --gres=gpu:al00 4g.20gb:1 nvidia-smi -L & srun
-—gres=gpu:al00 7g.40gb:1 nvidia-smi -L &
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[1] 376576

[2] 376577

GPU 0: NVIDIA Al100-PCIE-40GB (UUID:

GPU-5b6ec351-6067-def5-6148-17bbe%acocat6cd)
MIG 4g.20gb Device 0: (UUID:

MIG-9¢c8663co-ffce-5255-9de8-1a7bfaeba24?2)

GPU 0: NVIDIA A100-PCIE-40GB (UUID:

GPU-5b6ec351-6067-def5-6148-17bbe%acocacd)
MIG 7g.40gb Device 0: (UUID:

MIG-d647ab52-bb82-5952-90b5-7dd73e4154dc)

[1]- Done srun --gres=gpu:a100_49.20gb:1 nvidia-smi -L
[2]+ Done srun --gres=gpu:a100_7g.40gb:1 nvidia-smi -L

$ srun --gres=gpu:al00 3g.20gb:1 nvidia-smi -L & srun
-—gres=gpu:al00 7g.40gb:1 nvidia-smi -L &
[1] 376864
[2] 376865
GPU O0: NVIDIA Al100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acocat6cd)
MIG 7g.40gb Device 0: (UUID:
MIG-d647ab52-bb82-5952-90b5-7dd73e4154dc)
GPU 0: NVIDIA A100-PCIE-40GB (UUID:
GPU-5b6ec351-6067-def5-6148-17bbe%acoca6cd)
MIG 3g.20gb Device 0: (UUID:
MIG-06a42a19-4578-5d99-977c-2bcfeeeld876)

[1]- Done srun --gres=gpu:a100_39.20gb:1 nvidia-smi -L
[2]+ Done srun --gres=gpu:a100_7g.40gb:1 nvidia-smi -L

Fine-Grained GPU Partitioning via the MPS.F

On each MIG partition, we further partition it using a fine-grained resource partitioning feature
(MPS). The users can request part of the GPU resource within the partition, designated by
the percentage. More specifically, when one submits a job to the “gpu:a100_7g.40gb:1”
partition and requests 50% of the compute resource within the partition, then he/she puts the
following options: “ --gres=gpu:a100_7g.40gb:1” and “--export=Al,MPS_PERCENTAGE=50".
Here, we measured the performance of 4 basic streaming benchmarks (copy, scale, add, and
triad), while changing the MPS percentage, and obtained the following outputs:

$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=100
./cuda-stream/stream -i 400

Function  Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 1283.8396  0.00078101 0.00077891 0.00078583
Scale: 1279.1412  0.00078372 0.00078177 0.00079179
Add: 1273.5741  0.00118441 0.00117779 0.00119114
Triad: 1274.6062 0.00118443 0.00117683 0.00119805
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$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=50
./cuda-stream/stream -1 400

Function  Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 1206.2997  0.00083065 0.00082898 0.00083494
Scale: 1203.5306  0.00083258 0.00083089 0.00084090
Add: 1251.0352  0.00120544 0.00119901 0.00121093
Triad: 1252.0310  0.00120284 0.00119805 0.00122094

$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=10
./cuda-stream/stream -i 400

Function  Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 252.3345 0.00397639 0.00396299 0.00410700
Scale: 251.4420 0.00398745 0.00397706 0.00411701
Add: 357.3067  0.00420556 0.00419807 0.00433803
Triad: 359.7996  0.00417673 0.00416899 0.00431180

When we set the percentage to 50, the performance degradation is almost negligible.
However, we observed a significant performance drop when we set it to 10. This is a typical
behavior of memory-bound applications — scaling down computational throughput (or Flop/s)
does not affect the application performance when the arithmetic intensity is relatively small
compared with the F/B rate of the machine.

We present in Figure 7.10 the memory bandwidth of these basic benchmarks as a function of
the MPS percentage for these 3 different MIG partitioning options. For each of these
partitions, we scaled the MPS percentage, and their scalability are presented in the figures
below.

Partition: 7g.40gb Partition: 4g.20gb Partition: 3g.20gb

——Copy Scale ——Add ——Triad Copy Scale Add Triad —Copy Scale ——Add ——Triad
1400 1400 1400

1200 1200

1200

g
o

' 1000
£

g
o
o«
g

800

o
8

600 600

Bandwidth [GB.
Bandwidth [GB/s]
Bandwidth [GB/s]

400

\i

200 200

0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
MPS Percentage MPS Percentage MPS Percentage

0

=}

Figure 7.10: Measured Memory Bandwidth as a Function of MPS Percentage

Hierarchical GPU Partitioning via the MIG and MPS F. re

We then co-schedule multiple jobs with multiple different resource request options, and
observe the behavior, especially when more jobs than the available partitioning slots are
submitted. As the first example, we submitted 6 jobs on the “gpu:a100_79.40gb:4” partition,
each of which requests one job slot on the partition. We used the streaming benchmark here
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and observed the following behavior. As this partition can execute up to 4 jobs concurrently,
the last two jobs were stacked in the queue, and were launched right after the requested

resources became available.

$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=25
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 7g.40gb:1
-—export=All,MPS PERCENTAGE=25 ./cuda-stream/stream -i 400 &

[1] 395124
[2] 395125

$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=25
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 7g.40gb:1
--export=All,MPS PERCENTAGE=25 ./cuda-stream/stream -i 400 &

[3] 395213
[4] 395214

$ srun --gres=gpu:al00 7g.40gb:1 --export=All,MPS PERCENTAGE=25
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 7g.40gb:1
--export=All,MPS PERCENTAGE=25 ./cuda-stream/stream -i 400 &

[5] 395293
[6] 395294

srun: job 1110 queued and waiting for resources
srun: job 1111 queued and waiting for resources

STREAM Benchmark implementation in CUDA
Array size (double precision) = 536.87 MB
using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 706.2307 0.00273704 0.00141597 0.00366116
Scale: 702.6812 0.00277921 0.00142312 0.00361609
Add: 951.6648 0.00337473 0.00157619 0.00500917
Triad: 965.2433 0.00332884 0.00155401 0.00444293

srun: job 1110 has been allocated resources
STREAM Benchmark implementation in CUDA
Array size (double precision) = 536.87 MB
using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 523.5681 0.00305376 0.00190997 0.00387907
Scale: 581.4117 0.00287126 0.00171995 0.00376487
Add: 722.2427 0.00329247 0.00207686 0.00408602
Triad: 642.1164 0.00353842 0.00233603 0.00469303

srun: job 1111 has been allocated resources
STREAM Benchmark implementation in CUDA
Array size (double precision) = 536.87 MB
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using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)
Copy: 598.7586 0.00290515 0.00167012 0.00378084
Scale: 548.5619 0.00307704 0.00182295 0.00388598
Add: 627.0762 0.00361930 0.00239205 0.00483990
Triad: 688.0420 0.00341054

0.00218010 0.00436807

In the second example, we submitted 3 jobs on the “gpu:a100_4g.20gb:2” partition and 3
jobs on the “gpu:a100_3g.20gb:2”, each of which requested one job slot. We used the
streaming benchmark here and observed the following behavior. As each of these partitions
can execute up to two jobs concurrently, the last two jobs were stacked in the queue, and
were launched right after the requested resources became available.

$ srun --gres=gpu:al00 4g.20gb:1 --export=Al1l,MPS PERCENTAGE=50
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 3g.20gb:1
——export=All,MPS_PERCENTAGE=5O

[1] 397333
[2] 397334

./cuda-stream/stream -1 400 &

$ srun --gres=gpu:al00 4g.20gb:1 --export=All,MPS PERCENTAGE=50
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 3g.20gb:1l
--export=Al1l,MPS PERCENTAGE=50

[3] 397434
[4] 397435

./cuda-stream/stream -i 400 &

$ srun --gres=gpu:al00 4g.20gb:1 --export=All,MPS PERCENTAGE=50
./cuda-stream/stream -i 400 & srun --gres=gpu:al00 3g.20gb:1
-—export=All,MPS PERCENTAGE=50

[5] 397564
[6] 397565

./cuda-stream/stream -1 400 &

srun: job 1124 queued and waiting for resources
srun: job 1125 queued and waiting for resources
STREAM Benchmark implementation in CUDA

Array size (double precision) = 536.87 MB

using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 622.3003 0.00206568 0.00160694 0.00309706
Scale: 620.7346 0.00220128 0.00161099 0.00362015
Add: 628.9569 0.00309450 0.00238490 0.00468302
Triad: 629.7123 0.00294572 0.00238204 0.00439286

srun: job 1124 has been allocated resources
STREAM Benchmark implementation in CUDA

Array size (double precision) = 536.87 MB

using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

REGALE - 956560

67 01.05.2024



D1.4 REGALE evaluation

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 536.4932 0.00263514 0.00186396 0.00364900
Scale: 532.2045 0.00277924 0.00187898 0.00366592
Add: 616.5676 0.00360849 0.00243282 0.00463605
Triad: 615.9640 0.00344774 0.00243521 0.00463104

srun: job 1125 has been allocated resources
STREAM Benchmark implementation in CUDA
Array size (double precision) = 536.87 MB
using 192 threads per block, 349526 blocks
output in IEC units (KiB = 1024 B)

Function Rate (GiB/s) Avg time(s) Min time(s) Max time(s)

Copy: 534.5105 0.00299328 0.00187087 0.00367212
Scale: 531.9346 0.00285389 0.00187993 0.00365090
Add: 618.0819 0.00378833 0.00242686 0.00478697

Triad: 615.7831 0.00396609 0.00243592 0.00500703

Experimental results (scenario2): Figure 7.11 compares throughput among different
methods and across different workloads. The horizontal axis represents executed workloads
(AM: Arithmetic Mean), while the vertical axis indicates relative throughput normalized to that
of Time Sharing for each workload. In general, the proposed reinforcement learning-based
approach outperforms all the other methods for almost all the workloads. Compared with the
Time Sharing, it achieves 1.5716 or 1.873 times throughput improvement on average or at
best, respectively.

I Time Sharing (Baseline)
2.5 B MIG Only (C = 2)
MPS Only (C < Cpax)
H MIG+MPS Default (C = Cpay)
2.0 BN MIG+MPS w/ RL (C < Cpax)
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Figure 7.11: Throughput Comparison

Figure 7.12 presents the average throughput as a function of the window size (or number of
jobs within the scheduling target). The vertical axis represents the average throughput based
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on all of the 12 job queues, and the horizontal axis shows the window size (or the number of
jobs to be scheduled from a given queue, the first W jobs from the head are chosen). As
shown in the figures, the throughput increases as we scale the window size because our
approach can find better co-scheduling groups when the window size is higher.
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Figure 7.12 Average Throughput Comparison for various Window Sizes
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Figure 7.13: Per Application Slowdown

Figure 7.13 demonstrates the average application slowdown caused by co-scheduling for
different methods across different job queues. The X-axis lists evaluated workloads, while the
Y-axis represents the average application slowdown. We define the application slowdown
(AppSlowdown) for a given job taken from the given queue (J € Qi) as follows:

CoRunAppTime(J)

AppStowdown(J) = SoloRunAppTime(J)
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Here, CoRunAppTime(J) or SoloRunAppTime(J) denote the space-sharing execution time or
the solo-run execution time for the given job (J), respectively. We calculate the average
across all the jobs in the given queue for each method. The average application slowdown for
our approach is on average 1.829 and is 1.345 at best. As co-scheduling can offer more
concurrency (4 in our approach), it can achieve higher throughput in total as introduced
before. As our approach can trade-off the application slowdowns and concurrency in a better
way, it achieves higher total system throughput as a consequence compared with others.

Figure 7.14 compares the fairness in scheduling among different methods across different
workloads. We utilize the following fairness metric for the given queue (Qi):

min jeq, (AppSlowdown(J))
max jeq, (AppSlowdown(J))

Fairness(Q;) =

A higher value is better for this metric, and the highest one is 1. More specifically, when this
fairness metric is equal to 1, the maximum slowdown becomes exactly the same as the
minimum slowdown, which means all the applications suffer from the same degree of
slowdown. According to the figure, ours is comparable in fairness with the other approaches
except for the Time Sharing, even though ours outperforms them in throughput. Note we can
improve the fairness in our approach by taking it into account in the reward function.

1.6
HE Time Sharing (Baseline)
1.4 EE MIG Only (C = 2)
' MPS Only (C = Cpax)
mm MIG+MPS Default (C = Cpax)
1.21 E MIG+MPS w/ RL (C < Crax)
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Figure 7.14: Fairness Comparison

7.3 Power-aware scheduling

In this section we report on our investigations on scheduling applications by the resource and
job manager, when power constraints are applied. Thus, the main objective is first to stay
within the power limits at all time, and then to optimize the throughput or the energy
consumption while under varying power caps.

Scheduling with power predictions
We initially started to investigate augmenting the usual scheduling policies such as EASY
backfilling with power information to optimize scheduling during power constrained periods
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(power capping). As users are not necessarily experts in the power consumption of their jobs,
we had to rely on power predictions for the submitted tasks, to decide on their placement
before their execution. The simulations presented here use a sampling of the Marconi
platform execution traces, in order to have accurate power measurement of the real
execution.

Power estimations

To avoid replicating work done by partners in the power estimations, we decided to start with
simpler estimations not relying on machine learning. This is of course much coarser as an
estimation as the predictions obtained in the other approaches, specifically for the machine
learning aspects. However, we will see that the results are already really encouraging and
demonstrate the soundness of the approach. In the following figures, we will present results
with three basic estimations:

e Naive: the power estimation is set at the maximum of the possible consumption of the
job, according to the number of resources requested. This serves as a baseline for
the current state of practice.

e Max: the power estimation is set with an average of max consumption of jobs
submitted by the same user. This weighted average is done over a sliding time
window, with a decreasing weight for older jobs.

e Average: this power estimation is done with the same approach as Max, but relies on
the average jobs power consumption.

Five different power capping scenarios are presented in Figure 7.15, with available power
from 10% to 70% of the dynamic power available (that is, the power range consumed above
the minimal idle power). For Max and Mean power prediction we present two boxplots, the
left one being the predicted value for energy consumption before the execution of the
schedule, and the right one being the real energy consumption after execution of the
applications.
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Figure 7.15: Mean power consumption during power capped periods (from 10% to 70% of
total power).

As can be seen on the figure, the predictions for Max and Mean are reasonably close to the
real measured power consumption during execution (roughly within 10%). The main
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difference is in how the scheduler is able to select and place more tasks when the prediction
is lower, as the predictions are always ordered: Naive predicts the full utilization of all the
nodes, Max predicts an execution at the maximum power consumption seen on previous jobs
by the same user, and finally Mean predicts a consumption at the average power
consumption of the preceding jobs. This is reflected in the mean power consumption of the
platform. With the Naive prediction, the mean power consumption during the power capping
periods is far from the cap, first because applications are not consuming their predicted
power, and also because there often is some left over unallocated power as there are no
applications fitting perfectly in these leftovers. The Max power prediction limits the power
allocated to applications, so this frees some power to allocate more applications in this
period. Finally the Mean prediction is a bit too optimistic and sometimes goes over the power
caps. This could be resolved by enforcing the cap at the node level for all applications,
ensuring that the platform stays within the designated power envelope.

Using more of the available power translates directly to running more jobs during the whole
day. Since the workload from Marconi is sampled and simulated over a week-long period with
several power capping events, the throughput is only comparable for a fixed power capping
scenario. In order to compare the impact of the intensity of power capping we present in
Figure 7.16 another metric of improved job execution, namely the mean turnaround time
increase. This metric allows us to see for different power capping values, how the jobs are
delayed on average in their execution. As you can see in this figure, when 70% of the
dynamic power is available the mean prediction allows for an execution with almost no
turnaround time increase. This is partly explained by the fact that a supercomputer rarely
runs at 100% of its peak available power, and so there are enough applications running at
70% or less to fill the power capping periods without a global impact on the schedule.
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Figure 7.16: Mean turnaround time increase
For the Naive power prediction however, the impact is immediately visible as part of the
platform will be kept artificially idle during the power cap periods. Finally, with large power

cap settings the gap between the different solutions is less important as there is not a lot of
energy to use anyway.
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Scheduling with Eco mode (DVFS volunteers)

To go beyond this first power estimation approach, we investigated giving some freedom to
the users, by allowing them to pick the execution mode of their jobs among two possible
mode: a normal mode where executions are left as they normally are, and an Eco-mode
where jobs can be individually capped if needed to guarantee the global power cap. In order
to assess this Eco-mode without interference from power aware Easy-backfilling, we used in
this approach a classical power oblivious scheduling heuristic, using the application power
capping only if required by the power usage at the start of a power constrained period. So if
there are no power capping periods, our Eco-mode is not taken into account at all.

Job Killing by Scheduler and Eco Acceptance
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Figure 7.17: Jobs killed per volunteer percentage for different power caps.

The Eco-mode approach was presented extensively in deliverable 2.3, and will only be briefly
recalled here. When a power capping period starts, all the Eco-mode jobs currently running
are iteratively changed to lower CPU frequencies until the power cap is satisfied. In the case
where there are not enough volunteers currently in execution, or if the power cap is extremely
demanding, some applications will be killed until the power cap is respected. During the
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power capping period, whenever a job ends and frees some power capacity, the Eco-mode
jobs previously slowed down are set to higher frequencies to use that newly available power.
If all the Eco-mode jobs are at their optimal frequency and there is some power left, a new
job can be started as long as its power consumption fits the available power without
impacting currently running jobs. Real power measured on the platform is used to maximize
the power consumption during power capping periods. As shown in Figure 7.17, in cases
where the power cap is high, having enough volunteers is enough to guarantee that the
transition is smooth without killing any jobs. When the power cap gets more restrictive, or if
there are not enough volunteers, the number of jobs increases notably. To motivate users to
declare their jobs as Eco-mode, non Eco-mode jobs are selected first to be killed, until only
Eco-mode remains. This is visible in the scenario where only 50% of max power is available.
Note that this time we are not considering the dynamic power, but the total power (thus
including idle power). The motivation for this difference in power considered is to be able to
put some nodes in deep sleep or total shutdown if this helps to avoid killing some jobs. We
did not however reach that step yet in our experiments.

Energy Lost Killing Or Slowing Jobs by Scheduler and Eco Acceptance

Powercap = MaxPowear*0.6| |Powercap = MaxPower*0.7| |Powercap = MaxPower*0.8| |Powercap = MaxPower*0.9

] 1 1
100 1 | I 1
1 1
— ! ! Status
= 1 1
E 754 | 1 1
= KILLED
7 ' ' B stoweo
2 5 [ ! !
- ! ! SLOWED & KILLED
o 1 1
=] 1 1
= ] |
= 4 |
w 2o I |
I |
1 ' '
0 | Bl e _ {
III T T T T T fl'l T T T T T o T 1 T T T T T T T 1 T T T T T T
o @2 R e s P 2 og E s @ @ o o - R S
&= o a- * Iy [=" O ar N o N [=] 6: & H G- N [=] 6: o N o a- o]
8ok pgrhs Scgghks BohRRS Sckphs
28 68 86 B e & a6 6 B e &6 &6 @ e &8 &
L OO oL T U @ U@ L T W @ UL § L @ @ T oL T LU @ @
T B D B 4. © T 2 U © 9T T o T T ©° © O T 9 2 © © O
e @ @ & @ © @ ¢ @ © @ @ & @ & @ & © & @ & @ & @
E E E E E E E E E E E E E E E E E E E E E E E E
- w - _
2 o o 9o g g o 2 o o o 9 o o T o o o 9o g 9 L o o o 9 o 9
= 0 o O o 0 O = 0 0o 0 & 0 g = 0 © 0o 0 0o O = 0o 9 0 0 O 0O
o U @ O o x b D W B @ @ = O D @ D @ D = @ D @ o o @
oy woW oW uw o W oL W oW owow oW W w ww W o ww w|mWwu
THN T THR T I T T T T T VA T U T T T T T T T T [T T T U T VI T T
L0 T e T e i e e T | (0 T T T s T T [ T T o O T 0 T o [ s Tl T Tl B e ol |
L IL oL O @ L i L O L L @ o @™ L oL L o Lo o L L L @ @ I o

(=%

Scheduler and Ecomode Acceptance

Figure 7.18: Lost energy compared to a normal execution

In Figure 7.18, we show how much energy is lost by slowing down or killing applications.
Indeed, whenever an application is slowed down, its total energy consumed during the
execution is more than during a normal execution, as the time increase is energy-wise more
important than the power reduction (since a significant part of the power consumption is
simply the base power consumption). Similarly, killed jobs used some energy without
producing any result, thus that energy is lost. For more details on these experiments, readers
are invited to check our research report’ available online.

" Luc Angelelli, Danilo Carastan-Santos, Pierre-Frangois Dutot. Run your HPC jobs in Eco-Mode:
revealing the potential of user-assisted power capping in supercomputing systems. 2024.
(hal-04525291) https://hal.science/hal-04525291v1
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7.4 Power/thermal control

In the context of power/thermal control at UNIBO, our activities can be divided into three
parts: (i) ControlPULP: an open-source, low-level power controller. (ii) A room-level thermal
anomaly prediction framework that introduces a statistical rule-based approach for thermal
anomaly detection and machine learning tools for thermal anomaly prediction. (iii) The
integration of machine learning models into the production system, provides a framework for
implementing the machine learning model in production.

ControlPULP

The goal of the ControlPULP is to provide an HW/SW open-source low-level power controller
implementation to be integrated in HPC System on Chip (SoC) design, orchestrating the
internal and external physical power management interfaces (eg. VRM, PLL) to support
power capping and thermal capping services while implementing standard power
management interfaces with the O.S..

Being an open-source IP its evaluation depends on the actual implementation into a real
HPC SoC. The ControlPULP IP has been developed within the European-Processor-Initiative
and it is expected to be integrated in the Rhea processor by SiPEARL. Within the context of
the REGALE project the power management firmware and its interface toward the node
controller and job controller has been evaluated. This evaluation has thus been executed on
an emulation platform consisting of an Xilinx Ultrascale+ Zyng FPGA. The chosen FPGA
consists of two partitions, one composed by a core complex realized on silicon (PS) and the
other by a programmable logic fabric (PL). The PS part consists of dual ARM cores booting
Linux, which are used to simulate an HPC workload (performance model), the HPC SoC
thermal model and power model, as well as to implement real O.S. power management
interfaces. The PL part emulates the ControlPULP HW/SW IP by means of the synthesized
design and power control firmware executed into the programmable cores constituting the
ControlPULP HW IP. Moreover the ControlPULP design has been extended with HW mailbox
and shared memory regions to emulate the HW support needed in HPC systems for the
exchange of power management commands and information between the application cores
and the power controller unit, usually referred as Power Management Interfaces (PMI). The
results obtained by the sophistication added in the regale project to the ControlPULP design
focused on the firmware aspect, with specific focus on the O.S. to low-level power
management services, like power capping and thermal capping. Indeed the REGALE HPC
powerstack components (Job Manager, Node Manager, System Power Manager) focused on
the other half of the power management problem consisting of the chain of interfaces and
management control between HPC application to the O.S. power management and power
monitoring interface - in Linux O.S. systems referred to as Governors. In HPC SoCs based
on the ARM ISA, the default governor is named ARM SCMI, as it adheres to the System
Control and Management Interface (SCMI) standard. We extended the ControlPULP FPGA
emulation platform to support the SCMI standard and evaluated how latencies in the power
management command propagation across the different stack of controllers impairs the
power management functionality. Then we provided a sophistication in the ControlPULP
firmware which has been found to be a bottleneck in reacting to fast changes in the power
management settings due to its internal control loop structure and timing.
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Key Performance Indicator

The experimental analysis focuses on the Strategic Objective 1 (SO1) and more specifically
on the S0O1.3: Minimization of performance degradation under the operation with power
constraints. The chosen KPI is performance under thermal and power cap.

Experimental platform

The experimental platform consists of an emulated many-core system composed of 16 tiles
of four cores. An application consisting of two phases one memory bound and one cpu bound
is simulated. A node manager controller is also simulated to request frequency scaling
synchronously with the phase change using SCMI O.S. governor interface to the
ControlPULP firmware. The system is co-simulated in an Hardware-in-the-Loop (HIL) setting
using the Xilinx Zynq Ultrascale+ ZCU102 ControlPULP emulation system.

Evaluation protocol

We measured the relative performance gain obtained by introducing the sophistication in the
ControlPULP firmware to allow instantaneous changes of the internal power management
settings as soon as demanded by the SCMI O.S. interface if the requested power
management setting reduces the power consumption, if not the setting has the normal
latency due to the feedback loop update time which causes an up to 1ms delay.

Results

Firmware Configuration

Performance Improvement
ideal O.S. PMI

Performance Improvement
SCMI PMI

Default ControlPULP 2.75% 2.71%
firmware
Improved ControlPULP 3.18% 2.89%

firmware

7.5 Room-level thermal anomaly prediction framework

We have developed a room-level thermal anomaly prediction framework capable of detecting
and predicting anomalies within HPC clusters. This framework utilizes a statistical rule-based
approach derived from the analysis of real reported thermal hazard data to annotate
monitoring data. Additionally, it incorporates a flexible machine learning module that can
integrate with various classical machine learning and deep neural network (DNN) models.
These models are designed to capture the spatiotemporal characteristics of data from
computing nodes. Detailed specifications are outlined in D2.38.

Figure 7.19 illustrates the briefly different architectures of the TCN models. More details can
be found in D2.3 and the HazardNet® paper. We evaluated the prediction performance of
different Al models using two different test approaches (see Table 7.2). The main distinction
between these two approaches is the selection method for the test and training datasets. Our
findings indicate that TCN models outperform both LSTM and classical machine learning
approaches, prompting further enhancements in their architecture to improve predictive
performance.

8 D2.3 Final integration of sophisticated policies in the REGALE prototype
® Seyedkazemi Ardebili, M., Acquaviva, A., Benini, L., & Bartolini, A. (2024). HazardNet: A thermal
hazard prediction framework for datacenters. Future Generation Computer Systems, 155, 340-353.
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Figure 7.19: TCN Model’s Architecture and Input Data Structures for Different Types of
Convolutional Layers (1DConv., 2DConv., and 3DConv.).

Framework Evaluation

1. Random Test Dataset: In this approach, we randomly selected 20% of the one-year data
as the test dataset and trained the models on the remaining 80%. However, we find two
concerns about this approach: (i) There is much overlap between each successive sample,
meaning that each consecutive sample has a lot of replicated data. As a result, if one of the
two consecutive samples is in the training dataset and the other in the test dataset, due to the
high overlap of the two samples, the model is indirectly trained by the test sample. (ii)
Random selection training and test datasets destroy the chronological order of the training
and test samples, which is important for timeseries data because it destroys the causality of
the data. i.e., in the test dataset, some samples are chronologically before the training
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samples. However, in the objective case implementation, the model is trained with past data
to predict the future.

2. Time-separate Test Dataset: To address the issues of the first test approach, in this
approach, we simulate a real-case scenario by training the model with data from May and
testing the model in the first week of June. We should highlight that using a random selection
approach for validating machine learning models, even with time series datasets, is a widely
accepted practice in the field. In our study, the dataset was partitioned into sequences of
6-hour periods, where each sample represents a distinct and individual data point. Although
there might be similarities between consecutive samples, they are inherently unique. Utilizing
random selection for test samples offers several advantages. It enables a comprehensive
evaluation of the performance of the model (LVP, SVM, RBF-SVM, SGD-classifier, LSTM,
and TCN) across the entire dataset. This approach captures the properties and
characteristics of the dataset more effectively than using a time-separated approach. By
doing so, it ensures a robust assessment of the model's generalization capabilities,
particularly in scenarios where the data distribution may vary over time. We conducted tests
using the random test dataset selection approach. However, we were aware of the technical
challenges associated with this approach during the implementation in a real system. The
actual in-production system should train the model using historical data and utilize it to make
predictions for the future. The second test approach offers a perspective on the performance
of a model trained on a small portion (1/12) of the dataset, but in a more realistic scenario. By
using these two test approaches in conjunction, we can obtain a comprehensive evaluation of
both the ML/DL tool selection and the overall performance of the framework.

Table 7.2: Performance of various ML/DNN models in predicting thermal anomalies.

Random Test Dataset

Exp. Na Sime Madel architecture Inpaat #Chnls #Modes Fll-scare Precision Recall
Exp.1[19] Last Value Predictar Inlet Temp. 72 Modes of One Rack 072 072 0.72
Exp.2[19] < 1K Linear SV Inlet Temp. 72 Modes of One= Rack 055 056 0.55
Exp.3[19] < 1K RBF-5VM Inlet Temp. 72 Nodes of One Rack 0.B0 094 0.86
Exp.d4[19] = 1K SGD-classifier Inlet Temp. 72 Modes of One Rack G (i 0.60
Exp 5[19] 8K LSTM Inlet Temp. 72 Nodes of One Rack 0B 098 0.91
Exp&[19] 14 K TCN Inlet Temp. 72 72 Nodes of One Rack 0.98 0.99 0.98
Time-zeparate Test Dotaset

Exp. Ko Sie Muaodel Architecture [nput #Chnls #Nodes Fl-scare Precision Recall
Exp.F[19] 14 K 1D Conv, Mormal Inlet Temp. 72 72 Modes of One Rack 074 07 0.79
Exp.B 14 K 1D Comv, Naormal Inlet Temp. 72 72 Randomly Selected Nodes 0F7 066 0.9z
Exp.9 3T K 1D Conv, Mormal Inlet Temp. 3312 3312 Al Nodes 078 .66 0.96
Exp.10 15K 20 Conv, Normal Inlet Temp. 1 72 Randomly Selected Nodes [1 X 0.74 0.93
Exp.11 IK 20 Conv, Normal Inlet Temp. & Power 2 72 Randomly Selected Nodes 0.73 068 0.8
Exp.12 636 K 2D Comv, Normal Inlet Temp. 1 3312 All Noxles 0.E3 0.78 0.9
Exp.13 3320 K 2D Comy, Mormal Inlet Temp. 1 3312 All Modes 078 .85 0.98
Exp.14 251 K 30 Conv, Normal Inlet Temp. 36 3312 All Nodes 0.B7 0485 0.9
Exp.l5 271 K 3D Conv, Normal Inlet Temp. & Power 36 3312 All Nodes 0B 068 0.97
Exp.l& o K 30 Conv, Normal Inlet Temp. 36 3312 Al Nodes LE] 0.79 0.83
Exp.17 271 K 30 Conv, Normal Inlet & Cuibet Temp. 36 3312 All Nodes X1 0.69 0.97
Exp.18 5.4 K 3D Comv, Depthwize Inlet Temp. 36 3312 All Noxles 0.El 0.69 0.97
Exp.19 74 K 3D Comv, Depthwise Inlet & Cutlet Temp. 36 3312 All MNoxdes LBl 0.67 0.96

7.6 Integration of Machine Learning Models in a Production System

At UNIBO, a Machine Learning (ML) production framework has been developed for
integrating ML models with production systems. This framework consists of three main
subsystems: the monitoring subsystem, the ML operation subsystem, and the ML
anticipation/prediction model. Figure 7.20 presents the abstraction layers, components,
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and software stack of this ML production framework. More detailed information is available in
D2.3 and manuscripts'®.
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Figure 7.20: HPC monitoring and Machine Learning Operations framework.

Deployment Evaluation

To implement the proposed framework, we employ a cloud system hosted in the CINECA
supercomputing facility (on-premise) without creating any overhead on the HPC nodes. This
cloud infrastructure is based on the OpenStack version of Wallaby. The nodes of this cloud
system are composed of Dual-Socket Dell PowerEdge servers, 2xCPU 8260 Intel
CascadelLake processors (24 cores, 2.4GHz), 48 cores per node, hyperthreading x2, 768GB
DDR4 RAM, and an internal network of Ethernet 100GbE. The OpenStack virtual machine

19 Molan, Martin, Mohsen Seyedkazemi Ardebili, Junaid Ahmed Khan, Francesco Beneventi, Daniele
Cesarini, Andrea Borghesi, and Andrea Bartolini. "Graafe: Graph Anomaly Anticipation Framework for
Exascale Hpc Systems." Available at SSRN 4713330.
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executes the ExaMon production, which we extended with additional ones for the Kubeflow
and Kubernetes pods needed by the MLOps. The computational resources available for the
ExaMon monitoring systems are 300GB of RAM and 40 vCores. We also collect standard
Kubernetes metrics. For implementing the MLOps framework, we used Kubernetes version
1.24 in our framework for automated deployment, scaling, and management of containerized
applications. Our Kubernetes cluster has 48 vCPUs and 360 GB of RAM available. For
Kubeflow, we used the canonical Charmed Kubeflow version 1.6.

We analyzed three types of neural networks, each requiring varying amounts of input data or
data points. The data points must be extracted from the database. As will be indicated in
Table 7.3, the data extraction phase is the most time-consuming part of the pipeline.
Following this, the pipeline includes steps like data preprocessing, inference, and reporting
results back to the monitoring system. These steps may vary in latency or computation
overhead depending on the size of the data points and the NN model. These three profiles
represent different classes of the Neural Network (NN) model. They require less than 1K,
approximately 100K, and around 5M data points. For these three sizes, we evaluated the
inference pipeline’s computing time, network, memory, and computing cost.

We collected several metrics to evaluate our pipeline, including data extraction latency,
preprocessing time, inference computing time, and publishing results latency. These metrics
are measured in seconds and presented in Table 7.3. We also monitored resource usage,
including CPU and memory usage and the number of pods used. The corresponding metrics
are summarized in Table 7.4, which shows resource usage for the baseline setup and the
three different types of NN models (in view of input data size); the results are grouped into
five sub-tables, reporting the resource usage for the monitoring system/ODA ("ExaMon”
sub-table), Kubernetes management, Kubeflow management, user workload not including
the NN inference ("User Namespace” sub-table), and the workload due to the NN models
pipeline ("ML Production pipeline” sub-table).

Processing time and Computational Resources Overhead

Table 7.3 shows the latency for different pipeline parts. The last column reports the inference
rate, measured as the number of inferences per hour each NN model type achieves. In
pipelines, the inference rate depends on the processing time and latency of the pipeline. Data
extraction is the most time-consuming step in the pipeline. Pre-processing only takes up 1%
of the data extraction latency, and inference time is less than 1%. As evident in Table 7.3,
when scaling the pipeline from the limited number of data points (e.g., from one rack to all the
racks of the Marconi100 supercomputers), we notice that the data extraction time scales
sublinearly - while increasing the data request of 50x the query time to the ExaMon
monitoring system increases only by ~ 5x. After extracting the data, the data preprocessing
step requires the second most computing time, while the inference and result publishing
steps take negligible time. This result indicates that the proposed framework can scale to
exascale system requirements. Moreover, The pipeline being the bottleneckthe data
extraction of more complex models can be afforded with the current system at a negligible
cost.

To better understand the implication and cost of the proposed MLOps framework in
conjunction with ODA, we collected resource usage data for different parts of the monitoring
system, Kubernetes, and Kubeflow without running any pipelines to determine the base load
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of the framework (as shown in Table 7.4). By looking at the baseline case (Baseline in Table
7.4), we can notice that the ExaMon ODA framework under normal operations (continuous
data collection from the different sensors and dashboards) consumes 3 virtual cores (vcores)
and 190GB of memory, while the MLOps framework while not processing any data analytics
pipeline uses 75 pods (13 used by Kubernetes, 59 Kubeflow, 3 user namespace), 0.66
vcores and almost 7GBs of memory for its micro-services — almost the 22% more vcores and
4% more memory than the pure monitoring framework. Interestingly, when a real-time ML
model pipeline is performed (for ~6M input data points in Table 7.4) for all the nodes of the
Marconi100 supercomputer, the ExaMon load increases from 3.08 to 3.41. And the MLOps
load increases, from 0.66 vcores to 0.96 vcores with a relatively negligible cost for real-time
inference (0.03 vcores). As a result, supporting a real-time ML model in production on the
Marconi100 supercomputer requires 30% more vcore resources than merely monitoring it. Of
this 30% increase, 11% is attributable to the increased load on the monitoring system, while
the remainder is associated with the MLOps component. The ML inference pipeline accounts
for less than 1% of the entire overhead, making it ready to scale to larger supercomputers,
like exascale systems.

Table 7.3: Processing time and latency of different deployment configurations.

MLOps Pipeline Stage Execution Time [s]
Data Data Publishing #Inference
Points [ Extraction [s] |Preprocessing [s]| Inference [s] | Results [s] | Total [s] /Hour
~1K 4.2 0.1 0.013 0.002 4.325 832
~100K 10.33 0.15 0.014 0.002 10.496 343
~5M 50.238 4.6 0.337 0.06 55.235 65

Table 7.4: HPC monitoring and MLOps framework computation resource requirements and
ML model pipeline deployment overhead; the 5 main sub-tables indicate the different
framework’s components.

ExaMon Kubernetes
Ptt))?;?s #ycores Mem | Netin | Netout [pod|#vco| Mem | Netin Net out
[GB] | [kB/s] [KB/s] s | res | [GB] | [kB/s] [KB/s]
- 3.08 189.5| 6670 6739 [13]0.31| 0.63 | 1350 864
~1K 3.35 189.5 6680 7334 1310.31| 0.63 | 1430 870
~100K 3.59 189.5| 9588 7732 13(0.31| 0.63 | 1780 880
~5M 3.41 189.5 | 8686 7975 |[13(0.31| 0.63 | 1910 880
Data Kubeflow User Namespace

Points | pods #vcore| Mem | Netin | Netout |pod|#vco| Mem [ Netin Net out

s [GB] | [kB/s] [KB/s] s | res | [GB] | [kB/s] [KB/s]
- 59 | 0.22 | 5.44 23 28 3 10.13( 0.47 7 1
~1K 59 | 0.22 | 5.41 24 30 302 05 8 1
~100K | 59 | 0.23 | 5.41 26 32 3102 0.91 8 1
~5M 59 | 0.22 | 5.41 31 32 3 (04| 163 21 1
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ML Production Pipeline

Data

Points pods #vcore| Mem | Netin Net out

s |[eB] | [kB/s] | [KBIs]

~1K 1 0.01 0.4 1 1
~100K 1 0.01 | 0.44 1 1
~5M 1 0.03 | 1.07 14 1

7.7 Dynamic optimization of the energy-efficiency of HPC applications
The goal of Bull Dynamic Power Optimizer (BDPO) is to optimize the energy-efficiency
associated with the executions of HPC applications. To do so, it resorts to fine-grain
monitoring of CPU performance counters to identify phases with low computational intensity
at runtime. When so, BDPO enforces Dynamic Frequency Voltage Scaling (DVFS) to shift the
processor tradeoff between reachable performance and dynamic power consumption toward
lowering the latter. The underlying rationale is that decreasing the computational power of the
CPUs during low computational phases should only have a limited and negligible impact on
the performance of the executed HPC application. However, while operating at lower voltage
and frequency, the processor draws less power. As a result, the energy-efficiency associated
with the execution of the considered HPC application is increased.

The evaluation strategy for BDPO stems quite directly from the rationale of its approach
which was just outlined: executing HPC applications with and without BDPO while monitoring
the associated Time-to-Solution (TtS) and Energy-to-Solution (EtS), so as to quantify the
improvement of the energy-efficiency induced by BDPO.

Key Performance Indicator

Based on the initial description of the Strategic Objectives (SO) and the rationale of BDPO, it
appears evident that SO1.4 (decreased energy-to-solution) is the most relevant objective for
evaluating BDPO. However, the Key Performance Indicator (KPI) associated with SO1.4 in
Table 3.1, namely the EtS, is not sufficient on its own to evaluate BDPO. It is essential to
consider the impact on Time-to-Solution when assessing any decrease in Energy-to-Solution.
Therefore, in order to determine the performance of BDPO, we evaluated the reduction in
EtS achieved by its actions while also considering an upper bound on the resulting
performance degradation. Specifically, we imposed a constraint that the Time-to-Solution
should not increase by more than 3% as a result of the actions taken by BDPO.

Experimental platform

The experimental platform used to evaluate BDPO is an Atos on-premise supercomputing
partition consisting of 32 BullSequana X2410 compute nodes (details below) with an
Infiniband HDR100 interconnection network. The partition is managed by Slurm (version
23.11), and both Bull Energy Optimizer (BEO) and its module implementing TAAPC are
installed on the management nodes. BEO features 1Hz out-of-band energy monitoring of the
compute nodes, and has the capability to enforce power caps on the latter, also in an
out-of-band fashion.

Details of the BullSequana X2410 compute blades:
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e 2 sockets with AMD Epyc 7763 (2 x 64 cores) @ 2.45 GHz
e 256 GB DDR4 (16 x 16 GB) @ 3200 MHz
e Direct Liquid Cooling (DLC).

Evaluation protocol

The evaluation protocol for BDPO consists in executing a corpus of HPC applications with
different configurations regarding DVFS, while monitoring the TtS and EtS associated with
those runs (BEO is used for energy monitoring). The below list described those DVFS
configurations:

e Perf: it refers to executions with the acpi-cpufreq performance governor in
charge of managing the frequency of the processors. It acts as a reference (i.e. a
baseline) to compare to since it is the default configuration enforced on a vast
majority of production HPC systems (including the top supercomputers of the TOP500
rankings) ;

e Bdpo: it refers to executions for which BDPO manages the frequency of the
processors.

Additionally, the aforementioned set of HPC applications considered in this experimental
work is the following: NEMO, NAMD, QuantumEspresso, and GROMACS.

Finally, just as for the evaluation of TAAPC, let's mention the fact that each “experimental
point” (i.e. an application executed for a DVFS configuration) was replicated, here 11 times.
The cross markers represent the average values of those 11 repetitions.

Results and discussions

Figure 7.21 shows the Energy-to-Solution (EtS) in Joules and the Time-to-Solution (Tts) in
seconds for executions of four HPC applications, with BDPO (“bdpo” configuration - purple
markers) and without BDPO (“perf’ configuration - red markers) being executed in parallel
with the applications. The cross markers represent the average values of the associated sets
of points. Table 7.5 sums up the results presented by Figure 7.21. As stated above, the “perf’
configuration acts as the reference/baseline against which the values associated with the
“bdpo” are evaluated to build the “rel” row. For this row, +12.5% in one of the TtS columns
would mean that the average TtS for an execution of an application with the “bdpo”
configuration is equal to 1.125 the average TtS for an execution of the same application with
the “perf’ configuration (and, respectively, for -8.75% it would be 0.9125).

Table 7.5: Average Energy-to-Solution (EtS) and Time-to-Solution (TtS) for executions of four
HPC applications for the configuration “perf” and “bdpo” regarding the management of the
frequencies of the processors of the compute nodes.

GROMACS NEMO QE NAMD

EtS (MJ) | TtS (s) | EtS (MJ) | TtS (s) | EtS (MJ) | TtS (s) | EtS (MJ) | TtS(s)

perf 8.75 607.2 6.60 518.9 21.3 1607 5.39 415.0

bdpo 8.62 597.7 6.57 525.9 21.0 1611 5.23 409.0

rel -1.5% -1.6% | -0.45% | +1.4% -1.4% +0.2% -2.8% -1.4%

Globally, for the 4 applications, using BDPO does not significantly degrade the performance:
the increase of the TtS is under the fixed upper bound of 3%.
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In detail, GROMACS (due to variability issues on the side of the application, see outliers on
the top right corner of Graph (a) of Figure 7.21 and NAMD yields better performance when
BDPO is running in parallel with the application. Regarding QuantumEspresso, the 0.2%
increase of the TtS is arguably in the “OS jitter” (i.e. the performance variability induced by
the execution of the kernel of the operating system in the background), which is tantamount
to “no noticeable performance degradation”. Only NEMO performs better without BDPO,
which induces an augmentation of 1.4% of the TtS. From performance to energy concerns,
let’'s lay emphasis on the fact that for the four applications, the EtS is reduced by the action of
BDPO, by up to 2.8% for NAMD. Thus, using BDPO tends to improve the energy-efficiency of
real-world production-ready HPC applications.

Nonetheless, less than 3% of energy savings, even at no significant cost on the performance
side, seems underwhelming. To explain this fact, we note, first, that the architecture of the
compute nodes plays a significant role. Indeed, AMD processors exhibit a very limited range
of available frequencies. In this case, only 3, namely 1.50 GHz, 2.00 GHz, and 2.45 GHz
(with possibility to activate boost frequencies). The large gaps between those frequencies do
not make it possible to fine-tune the configuration of BDPO regarding CPU frequencies. And
since its action must be as transparent as possible from the performance point of view,
achieving high numbers for energy savings without a significant increase of the TtS is not
possible. That being said, BDPO should be able to induce better energy savings without
additional performance degradation. Should, since, as explained in the Deliverable D2.3
“Final integration of sophisticated policies in the REGALE prototype”, BDPO is not “complete”
yet. Indeed, it is being completely reimplemented to support new processor architectures. To
put it roughly, the version of BDPO used for the experiments presented in this document
corresponds to a transient state on the path of its refactoring, only packing its core features in
their simplest apparel. Once the new major version of BDPO is ready to be released, Eviden
intends to repeat an extended version of this evaluation protocol and to disseminate the
results in a white paper.

Lastly, one interesting thing to note regarding the experiments with NAMD: enforcing DVFS
with BDPO induced, on average, both better performance and lower energy consumption.
Indeed, it might seem counterintuitive that scaling down CPU frequency could improve the
performance of an application. The underlying explanation of this observation stems from the
concept of "thermal headroom". In a few words, when the "perf" configuration is enforced, as
soon as it is thermally possible, boost frequencies are enforced. As a result, even in
memory-bound phases, the processors are heating up while the boost frequencies do not
induce any performance increase. Consequently, during compute-bound phases when boost
frequencies would improve performance, there is not enough thermal headroom to enforce
the boost frequencies on long time periods. On the contrary, when the "bdpo" configuration is
enforced, the frequency of the processors is downscaled during the memory-bound phases,
which allow the CPU to cool down. Consequently, the boost frequencies can be enforced for
longer periods during the compute-bound phases, which yields better performance for the
execution of NAMD.
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7.8 Elasticity for Big Data applications

The particular sophistication is structured around the functionalities of the BeBiDa software
enabling Big Data applications to be executed elastically upon rigid HPC environments.
Typical evolving applications (where malleability is controlled by the application itself) are not
supported by default on the traditional HPC resource managers (SLURM, OAR, etc). Hence
mechanisms like BeBiDa have been proposed to enable the execution of this type of dynamic
applications with no interference to the HPC resource manager, by exploiting the cluster’s
unutilized resources to submit parts of the Big Data applications dynamically as low-priority
preemptable jobs while removing the ones whose resources may be needed by
higher-priority typical HPC jobs. In particular, we have focused on Big Data Spark streaming
applications. Spark applications are basically controlled by the Spark driver and multiple
workers that work in parallel, which are spawned as the applications’ needs appear. The
Spark application is executed dynamically using the rigid job-based execution mode of HPC
resource manager to launch each Spark worker as a different low-priority job. The
fault-tolerant and dynamic nature of Spark makes sure that the Big Data application will
eventually terminate and BeBiDa handles the usage of the HPC cluster resources elastically.
BeBiDa performs the growing and shrinking whenever needed considering both the needs of
the application and that of the HPC system but it has the limitation that the Big Data job may
be continuously interupted by the higher priority HPC jobs having an important impact on the
turnaround time. The sophistication of BeBiDa in the REGALE project has as goal the
minimization of the turnaround time of Big Data applications through two new techniques: i)
deadline-aware and ii) time-critical.

Key Performance Indicator

The main KPI to track for the particular sophistication of Big Data applications' elasticity is the
optimization in turnaround time for Big Data applications while executing them in parallel with
traditional rigid HPC applications. Some other indirect KPIs which are related to this
sophistication are those of scalability of executions of Big Data applications on HPC
resources along with the waiting time and starvation related to both Big Data and HPC
applications running on HPC clusters.

Experimental Platform

For this we have been using three different experimental platforms:

1) Emulation environment deploying 3 lightweight virtual machines on one single server
representing: i) Kubernetes cluster with 1 master and 1 worker nodes, ii) an HPC
cluster with OAR or SLURM with 1 master and 2 compute nodes.

2) A group of servers on an ICCS-hosted platform deploying i) 4 virtual machines for a
Kubernetes cluster and ii) 4 bare-metal nodes deploying SLURM with 1 master and 4
compute nodes

3) A group of servers on Grid5000 deploying i) at least 4 VMs for a Kubernetes cluster
and ii) 16 or more bare-metal nodes deploying OAR or SLURM for the HPC offloading

The initial developments and preparation of experimentation procedure has been done in all
the three platforms but in the end we present here only the results related to the Grid5000
experimentation.
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Evaluation Procedure

The goal is to evaluate the new techniques and heuristics that we have implemented to
improve the quality of service for the application that are running with BeBiDa. These
applications are running using ldle HPC resources but be preempted at any time by a starting
HPC job, which implies an undefined execution time if the HPC cluster is loaded.

To cope with this issue, we developed some mechanisms that allow the provision of
dedicated resources to the Bebida application and thus improve its quality of service. The
mechanisms are described in detail in Deliverable D2.3.

The first mechanism called deadline-aware or Punch is to watch the Kubernetes queue to
detect pending applications. When detected, a job is created in the HPC queue with a special
attribute that tells the HPC prologue to leave the Kubernetes daemon running, thus, during
this HPC job the resources are dedicated to the Bebida applications. To determine the size of
the Punch job in number of resources and time, the Bebida applications are annotated with
resource requirements. Another requirement is the optional deadline that a user can provide.
In this case, the Punch job is delayed to finish just before the deadline in order to avoid
unnecessary disruption of the HPC workload.

The second mechanism is called time-critical or Refill. It creates a fluid dynamic partitioning
of the resource, using resource quota in OAR. The HPC scheduler is configured to always
keep a defined amount of resources free of HPC jobs, which make them available for the
Bebida applications. These resources are considered fluid because this is not a static
partition of the cluster that is reserved, but an amount of resource which is not pinned to a
particular set of resources. This is a dynamic partition because the amount of reserved
resources can change over time. For now, we use annotations on the Bebida application to
trigger the increase of reserved resources and decrease it when the application ends. A more
interesting policy would be to use historical data to increase the response time with
prescriptive decisions instead of reactive ones, but this is out of the scope of this experiment.

The experiment begins by submitting a specific workload of HPC jobs such as Light-ESP™"
which is an adapted version of ESP benchmark'? which consists of filling up the HPC cluster
with a particular number of jobs of different sizes being sent with a certain arrival order and
rate. These jobs will keep an important system utilization but there will remain unutilized
resources. Hence, the goal is to make use of the unutilized resources for the Big Data Spark
job to be executed. So in parallel we submit a specific BigData Spark job related to the
Regale pilots, which is being submitted through the workflow engine Ryax to simulate the real
execution of the pilots. Once this is submitted the system goes through the integration of
BeBiDa with Slurm and OAR and the Spark job makes use of the unutilized resources of the
HPC cluster. In this context, we compare the new sophistication techniques (deadline-aware
and time-critical) with the default BeBiDa mode and we study the impact the different
techniques have on the turnaround time of the Big Data Spark job.

" Yiannis Georgiou and Matthieu Hautreux. “Evaluating scalability and efficiency of the Resource and
Job Management System on large HPC Clusters”. In: JSSPP. 2012 (cit. on pp. 13, 39, 65, 68).

12 Adrian T. Wong, Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz, David H. Bailey: ESP: A
System Utilization Benchmark. SC 2000: 15
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The methodology makes use of nixos-compose to perform reproducible experiments.
Heuristics

This experiment is designed to evaluate the impact of different variants of the aforementioned
mechanisms. We defined the following heuristics:

e NOHPC: In order to have a control experiment, run the Bebida app without HPC
workload
None: Raw Bebida implementation without optimization
Punch: Create jobs at submission time with arbitrary resource requests
Refill: Use resource quota to dedicate a dynamic set of resources to time critical
Bebida applications

The Deadline goal is to run before a given deadline. Because it does not follow the same
objective it is not to be compared to the others.

Workloads

For this experiment, we run a Spark example application (SparkPi) 4 time in a row using the
same heuristic, with 5 sec between each run.

Meanwhile, we emulate an HPC workload generated by LightESP. It starts 10sec before the
first Spark application, so the cluster is already loaded with HPC job when the first application
starts, and still submits jobs until the end of the last run.

Platform

The platform used for this experiment is Grid5000. We have used 16 nodes on the cluster
named “Gros” in the Nancy site. Details of the cluster are available here'

The deployment of the system is done in a reproducible manner using NixOS-Compose. It
allows use to easily deploy a reproducible software environment defined in a declarative way
called a composition. The composition used for this experiment is available here. The
environment created contains includes an HPC scheduler (OAR is used for this experiment
but Slurm is also available), a lightweight Kubernetes distribution called k3s, and the Bebida
optimization service which implements the heuristics.

Results

The following figures show the results retrieved from the experiments. We have reproduced
the same experiments 20 times for each heuristic so besides mean times we also show the
standard deviation. Figure 7.22 provides the turnaround times of Big Data Spark application
being executed with BeBiDa on HPC resources using different heuristics. In particular it
shows that the application running alone (nohpc) has a stable execution time. Using Bebida
without optimization (none) the Bebida applications runs longer with large uncertainty on the
execution time which is expected because it depends on small time frames that sometimes
match task execution and sometimes dont. Hence the fault-tolerance of Spark is activated
more times than the other cases which provokes more delays in executions.

'3 hitps://www.arid5000.fr/w/Nancy:Hardware#gros
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Figure 7.22: Turnaround times of Big Data Spark applications on HPC resources comparing
different BeBiDa heuristics

100 -

) heuristic
":4 - none
= - punch
g BF renn

]

none punch refill
heuristic

Figure 7.23: Waiting times of HPC jobs when applying different BeBiDa heuristics for
execution of Big Data Spark applications
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Regarding the heuristics proposed in this work, Figure 7.22 shows that for the Punch method
(deadline-aware variation), it reduces the mean execution time by 4,4% when compared to
the None heuristic but it also significantly decreases the variability (-18%). The Refill method
(time-critical) improves the mean execution by 11,5% and decreases the variability by 32%.

Figure 7.23 shows the comparison of waiting times for different BeBiDa heuristics. This figure
shows the impact of BeBiDa heuristics, for execution of Big Data Spark applications, upon
the waiting times or starvation of HPC applications. We can clearly observe the impact on the
HPC jobs'. The waiting time for None case is explained by the typical BeBiDa overhead in the
waiting time of HPC jobs. In the case of Punch jobs this waiting time becomes larger than
None since it injects jobs in the workload to reserve resources for Big Data applications.
Finally in the case of Refill it reduces the amount of available resources for typical HPC
executions, which increases even more the waiting time. Of course, this is expected because
in order to minimize the turnaround time of Big Data jobs it is normal that the waiting time of
HPC jobs would increase.

Finally, another important aspect is the scalability of the techniques. BeBiDa system manager
just makes use of specific parameters and mechanisms (prolog/epilog scripts, reservations,
etc) of traditional HPC resource managers Slurm and OAR to give the control of their HPC
resources to the external resource manager Kubernetes which is adapted to run Big Data
applications with higher elasticity. Therefore the scalability of BeBiDa and the way elasticity
will be done scalably for Big Data applications is actually directly related to the scalability of
the underlying tools Slurm, OAR and Kubernetes. All three of them have been proven to be
scalable in different contexts, hence we do not expect particular issues related to that. This
said, Kubernetes has not been designed with HPC scalability in mind, but the community is
pushing towards more scalable converged computing based on Kubernetes', hence our
techniques are going to leverage the outcomes of this movement.

Conclusions and Future Work

This section provided the experimentation of the Big Data applications elasticity and in
particular the evaluation of the sophistications provided on BeBiDa system manager to
improve the quality of service for the Big Data applications being executed with BeBiDa. We
have provided a reproducible experimentation methodology making use of NixOS-compose
software and different platforms such as Grid5000, upon which we evaluated the new
techniques and integrations. Our results are promising and showed a clear improvement in
the elasticity and quality of service for Big Data applications when applying the particular
techniques.

The execution of Big Data or Al applications upon HPC clusters is becoming an interesting
requirement for different use cases. Hence our goal is to continue working on the
improvement of BeBiDa. We would like to extend the time-critical (Refill) technique with
mechanisms that take into account historical data and eventually making use of ML to further
improve the way that we allocate resources for Big Data applications. Furthermore, we would
like to extend NixOS-compose mechanisms to be able to deploy experiments upon typical
Cloud infrastructures in order to be able to make our experiments upon Cloud resources.
Finally we are going to adapt BeBiDa to enable a tighter integration with Kubernetes, Slurm
and OAR in order to minimize the waiting times and the impact of collocation upon both HPC
and Big Data jobs.

4 Daniel J. Milroyisi et al. One Step Closer to Converged Computing: Achieving Scalability with
Cloud-Native HPC. CANOPIE-HPC@SC 2022: 57-70
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8. Evaluation of qualitative objectives

This deliverable presented an evaluation for the tasks within REGALE that aim to reach the
project’s quantitative objectives, in particular SO1 and partially scalability from SO2. For the
sake of completeness, we briefly comment below how we assess the status of the qualitative
objectives and refer to the deliverables where more information is provided.

S$02: Platform independence. Platform independence is validated through the capability of
instantiation of alternative integration scenarios involving different hardware architectures and
components. The REGALE architecture and API definition (Deliverable 1.3), the REGALE
integration scenarios and the REGALE library (Deliverable D3.3) have considered platform
independence and support this objective.

S02: Extensibility. Extensibility is sought by the ease of incorporation of new features and
alternative modules. This is sought by the REGALE API definition and the REGALE library.
More information is provided in Deliverable D3.3.

SO03: Automatic allocation of resources. Atomic allocation of resources refers to the
integration of the five REGALE pilots with the relevant workflow engines. The results of this
integration are reported in D4.3 and in Section 5.

S03: Programmability. This has been assessed by the application developers and pilot
users of the Consortium by comparing the features of their applications before and after the
optimizations within REGALE. Details are provided in D4.3.

S03: Flexibility. This objective is validated by the ability to execute under lightweight
virtualization within the REGALE-enabled system. This has been accomplished by the
integration of pilots 3 and 4 with the RYAX workflow engine (Deliverable D4.3).
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9. Conclusions

Deliverable D1.4 presented evaluation results from a wide campaign of experimentation
across all the activities of the REGALE project, i.e. prototyping, integration of pilots with the
workflow engines and sophistication. The evaluation process was designed with a primary
goal to assess the status of the project objectives at the end of the project. Based on the
results presented, we may note that:

a) REGALE met its ambitious goals to a large extent;

b) Further experimentation is required where simulation was employed, to test and

validate the results of REGALE on real systems and at larger scales.
REGALE partners remain heavily involved in all activities of the project (tools, prototypes,
pilots and sophistication) and their continuation and exploitation plans ensure concrete paths
towards incorporation of the project results in production systems.
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Appendix A: Co-scheduling simulator

Co-scheduling HPC Simulator

The simulator’s end goal is to provide a tool (APl and dashboard) for rapid development and
experimentation on scheduling and co-scheduling algorithms for HPC systems.

How does it work?
The simulator is divided into four main components:

1. The Generator creates a set of jobs that is used as input for the simulation.

2. The Cluster handles the logic of executing the jobs and moving the simulation step by
step to the next state.

3. The Scheduler provides the policy on how to submit the jobs for execution.

4. The Logger records cluster and job level events for a run and provides end-points for
plotting.

The cluster, scheduler and logger are the computational backbone of the simulation.

Generator
The Generator component creates a set of jobs as input for a simulation run, given a set of
real runs with real workloads on a HPC cluster. It wraps the information about each of their
execution time and compiles some additional hints. These are a unique numeric identifier (job
id), a job name, the number of processes asked, the current speedup of the job and current
binded cores.

In order to produce a set of jobs, there are three different techniques provided. The first is the
random selection of workloads from a set of real runs given as an input their number of
populace. The second, is to create a set of jobs given the occurrence of each individual
workload. The third is given a list of workloads’ names to create a set of jobs based on it.

Each of these techniques gives a certain degree of freedom to the user. The first technique
doesn’t provide any degree of choice other than the workloads the set of jobs is based on.
The second technique gives the freedom to choose which workloads will appear as a job.
The third gives the user the control to choose the workloads and their position/arrival in the
set of jobs.

Cluster

The Cluster component is considered the critical linking point of the simulation. It contains the
architectural information about the simulated HPC cluster. It handles the resource
consumption of the jobs and the general steps of the simulation until it finishes.

At each step the cluster checks if there are any jobs left in the waiting queue. If there are,
then it tests whether the scheduler can submit a new batch of jobs for execution. If there are
some jobs left in the waiting queue but the scheduling algorithm cannot submit any of them,
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then the cluster starts “executing” the jobs inside the execution list. By “executing”, it means
finding the job with the smallest remaining execution time, removing this time from the rest of
the executing jobs and freeing the resources (binded cores) of the jobs that have finished
execution. When resources are freed the cluster calls the scheduler and retries to submit any
jobs left in the waiting queue. Likewise, if there aren’t any job in the waiting queue but there
are jobs left inside the execution list then the cluster moves to executing them.

The stop condition of the simulation is defined outside the cluster so as the user has
complete control of how the simulation is expected to run.

Scheduler
Each scheduler follows a policy on how to submit the jobs in the waiting queue to the
execution list of a cluster for execution.

A co-scheduling algorithm needs to concern itself on how to make pairs of jobs and where to
find these jobs to make pairs. The only two places available to search for jobs are the waiting
queue and the execution list of the cluster. The logic pathways on how to make pairs from
both the waiting queue and the execution list are similar. When a co-scheduler is at the
waiting queue it queries if there is any job that it must prioritize to submit in order to elevate
the performance of the system and what is the best candidate-job to pair it with. When it is at
the execution list it queries if there is any executing block of jobs with unbinded cores that it
must engage first to improve the overall performance. It also searches for the best candidate
in the waiting queue in order to fill the gap of the unbinded cores. These four decision points
are approached as heuristics functions. The priority of where to search for the jobs is
changeable.

In our experiments we implemented two co-scheduling algorithms. The first one is the
Random Co-Scheduler which creates random pairs completely ignoring the heuristics
functions. The second one is an implementation of the heuristics co-scheduling architecture.
It uses the heatmap of real workloads and other job characteristics, as well as information
about the system in order to construct the next pair of jobs for execution.
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