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Executive Summary

This deliverable document reports the final architecture defined in REGALE, as blueprinted in
the REGALE prototypes. The ultimate goal of REGALE is to pave the way of next generation
HPC applications to exascale systems, and to accomplish this we defined an open
architecture (WP1), built prototypes (WP3) and incorporated in this system appropriate
sophistications (WP2) in order to equip supercomputing systems with the mechanisms and
policies for effective resource utilization and execution of complex applications (WP4). We
conducted them in a cooperative manner, i.e. the architecture and the prototype were
co-designed/conceptualized considering both state-of-the-art and next generation HPC
applications, maximizing in this way its applicability. The main contents of this document are
the descriptions of the architectural requirements for a variety of REGALE use cases (Section
4) and the final version of the REGALE architecture (Section 5), which functioned as a
blueprint for the other work packages, e.g., the software prototyping in WP3 (Section 6).
Further, we discuss our security, privacy, and reliability considerations in the REGALE
architecture and software stack (Section 7). Finally, we conclude our work and describe
future directions (Section 8).
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1. Introduction

An exascale supercomputer will not be “yet another big machine”. With a cost of hundreds of
million euros, power consumption in the order of tens of megawatts and a lifetime that
reaches a decade at most, judicious management of those resources is of utmost
importance. Turning our attention to the critical aspect of power consumption, the current
leader in the TOP500 list as of Nov. 2023 [2], has an exascale computational capacity and a
power consumption that exceeds 20MW. Even with the highest technological advancements,
a post-exascale machine is expected to well exceed the 20-30MW threshold that is the
current upper bound of power consumption for exascale computing, and Aurora is projected
to consume just under 60MW of power at its full scale [3]. A machine of this size will not be
able to operate at full power consumption, and energy consumption will become a primary
concern to keep its environmental footprint and operational costs at acceptable levels without
neglecting its ultimate purpose: to equip highly critical applications with the computational
capacity to solve extremely resource hungry problems.

Focusing on the application side, achieving scalable performance and high system
throughput has always been a cumbersome task. To make things even more challenging,
next-generation HPC applications can no longer be considered as
computation-/communication-intensive, monolithic blocks with minimal and infrequent I/O
requirements. The revolution of Big Data and Machine Learning, the emerging Edge
Computing and loT, with the scale of modern HPC systems and cloud datacentres, are
rapidly changing the way we solve scientific problems. Novel computational patterns are
rapidly evolving, where the solution of a problem may require a workflow of diverse tasks,
performing simulations, data ingestion, data analytics, machine learning, visualization,
uncertainty quantification, verification, computational steering and more. Existing solutions
may render the execution of such applications in a large-scale supercomputer either
impossible, or extremely suboptimal in terms of time to solution and user cost, due to the
absence or inefficiencies of appropriate methods to compose, deploy and execute workflows,
and/or due to their extreme requirements in 1/0O resources, which cannot be met by the
system capacity without holistic and sophisticated deployments.

The ultimate goal of REGALE is to pave the way of next generation HPC workflows to
exascale systems. To accomplish this, we define an open architecture, build a prototype
system and incorporate in this system appropriate sophistication in order to equip
supercomputing systems with the mechanisms and policies for effective resource utilization
and execution of complex applications. The REGALE architecture and prototype is
co-designed considering both state-of-the-art and next generation HPC applications,
maximizing in this way its applicability.

REGALE takes an approach that considers two interacting paths: The first path is largely
motivated by the PowerStack initiative [1] that primarily targets multi-criteria operation of
supercomputing services with a strong focus on power and energy efficiency. The second
path focuses on the requirements posed by non-conventional, workflow-based applications
and their integration with an appropriate workflow engine, with a goal to achieve easy and
flexible use of supercomputing resources at large scales.

This final version of the WP1 deliverable reports the critical stepping stone for the
implementation of REGALE: It starts from the project’s strategic objectives (Section 2), the
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final version of our strawman architecture and software tools (Section 3), and analyzes a set
of relevant use cases together with their requirements (Section 4). These are then used to
define the REGALE architecture, components, and interfaces (Section 5) instantiated with the
use of the various modules brought in REGALE and evolved throughout the project by the
partners (Section 6). Further, we discuss our security, privacy, and reliability considerations in
the REGALE architecture and software stack (Section 7). Finally, Section 8 concludes the
final status of this work and introduces several future research directions to future studies.



2. Project Strategic Objectives

REGALE Strategic Objectives: REGALE envisions to meet the Strategic Objectives (SO)
presented below.

Strategic Objective 1 (SO1): Effective utilization of resources. This strategic objective
considers the huge amount of resources available in exascale class machines and the
resource footprints of both traditional and emerging applications. The improvement in
resource utilization will indicatively translate to a combination of:

e SO1.1: Improved application performance. Better allocation of resources that
considers the exact application footprint, data requirements, control and data flows
will drastically improve performance for critical applications. This is especially the
case for the next generation, workflow-based applications where one of the major
problems is the highly suboptimal use of resources, leading to disappointing
performance, inability to scale, misuse of resources and consequent over charges of
end users.

e S01.2: Increased system throughput. By taking global and elaborate decisions
considering the entire mix of workloads to be executed in the supercomputer, we will
be able to significantly raise the system throughput, servicing more applications per
day and ultimately increasing user satisfaction and system impact.

e SO01.3: Minimized performance degradation under the power constraints. Power
capping is a common mechanism to align supercomputer consumption with the power
availability and charges of the supplier. In REGALE we will replace the current
brute-force, performance-oblivious strategies by a set of sophisticated policies for
dynamic adaptation to power envelopes without compromising application
performance and system throughput.

e SO01.4: Decreased energy to solution. REGALE supports the operation of a
supercomputer with energy consumption as a first class citizen. In this case we will
incorporate mechanisms and policies to minimize energy to solution if this is
promoted by the operation policy.

Strategic Objective 2 (SO2): Broad applicability. This strategic objective guided our
architecture design and prototyping towards maximizing openness, platform independence,
scalability, modularity, extensibility and simplicity, allowing for its implementation with various
software modules, on any supercomputing platform, for the realization of SO1. In particular,
this will be achieved through compatibility to relevant specifications and standards.

To assess if this SO is met, we will validate the existence of the following key features:

e Scalability: The REGALE system should be able to operate in exascale setups and
beyond. To this end, first our power management is conducted in a hierarchical
manner to localize the overhead. Second, we exploit workflow-level inter-job
parallelism in addition to the traditional intra-job parallelism (weak/strong scaling) for
modern workloads. We further try to minimize the resource management overhead by
carefully selecting the underlying middleware for the REGALE common library. To
assess the scalability of the REGALE approach, we performed experimental results
and simulations, and we also extrapolated our results to larger system scales for
some cases (see D1.4).



Platform independence: The REGALE system should be able to operate across all
major architectures of large supercomputing facilities and be free of any vendor
lock-in. This was validated by our integration process where we provided full
integration scenarios with multiple vendor-specific solutions and provided indicative
solutions for all major modules of the HPC ecosystem (see D1.4).

Extensibility: The REGALE system should be extensible to any new feature or
component that aligns to its open architecture. This is realized simply by becoming a
publisher/subscriber of any functionalities in the newly introduced REGALE common
library layer (only if approved by the administrator).

Strategic Objective 3 (SO3): Easy and flexible use of supercomputing services.
Widening the use of advanced computational and data facilities beyond the highly skilled
traditional HPC users requires significant efforts on the side of the centers. In REGALE we
released the developers and users of complex applications that originate from new industrial
use cases from the extremely cumbersome task to finetune the execution of their application
on an exascale system. Moreover, we equipped them with an easy-to-use set of tools to
facilitate the development and deployment of their applications to exascale systems.

To assess if this SO is met, we validated the existence of the following key features:

Automatic allocation of resources: Users of complex applications should not bother
with the way their application is distributed on an exascale system. We will compare
the process of requesting resources between the current state-of-the-art systems and
applications and the REGALE solution.

Programmability: Application developers should find the REGALE architecture and
system easily accessible to develop and deploy their code(s). This was qualitatively
assessed by the application developers and pilot users of the consortium by
comparing the features of their application before and after the optimizations within
REGALE (see D1.4).

Flexibility: Applications should be able to execute under lightweight virtualization
within the REGALE-enabled system. This was explored such as with several Pilot
applications by integrating with the RYAX tool.
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3. Final Architecture and Software Tools

In this section, we first introduce the REGALE final architecture and its components/actors.
We then summarize the software tools to be used in this project. We finally introduce our
implementation paths that integrate the tools.
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Figure 1: REGALE Final Architecture
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Figure 1 illustrates the general intermediate architecture. The descriptions of key actors and
software components are as follows.

Human actors:

A. Site administrator: Configures the site-level policy appropriately prioritizing between
power/energy/performance and quantifies the relevant constraints. The policy can be
changed according to the current needs with respect to objectives and/or constraints.

B. User: This actor submits a job for execution to the system, requests resources for her
job and optionally provides information on the performance behaviour of her
application.

C. Developer: This actor develops, optimizes and instruments her application with
regard to relevant objectives to facilitate further optimization by the system and
collection of profiling information.

System modules:
1. System manager: The system manager receives as input a set of jobs to be
scheduled within the system and indicatively decides upon when to schedule each
job, to which specific compute nodes to map it, and under which power budget or
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setting. For this, it constantly monitors and records power and energy telemetry data,
and controls power budgets/settings and/or user fairness. The system manager
applies system-wide optimizations and consists of the following two sub-modules that
work cooperatively.

e Resource and Job Management System (RJMS): The RIMS manages jobs
submitted by users and decides the assignments of node resources to them
and their launch timing as well. The decisions are based on the job information
given by the users, power/performance features characterized by the Monitor
(see next), and the node/job/system power budget information managed by
the SPM as well as the scheduling policy given by the site administrator. The
decisions are principally made in a static and proactive manner.

e System Power Manager (SPM): The SPM manages the power budget
allocations across nodes/jobs, including compute nodes, I/O nodes, and
others. The SPM provides the functionality to set the power cap to the entire
system and also can optimize the power budgeting across nodes depending
on the objective/constraints given by the site administrator, while interacting
with other modules such as the node manager, monitor, and others.

Job manager: The job manager performs job-centric optimizations considering the
performance behaviour of each application, its fine-grained resource footprint, its
phases and any interactions/dependencies dictated by the entire workflow it
participates in. It manages the control knobs in all compute nodes participating in the
job and optimizes them during runtime to achieve the desired power consumption (at
maximum possible performance), efficiency, or other settings. Additionally, it scalably
aggregates application profile/telemetry data from each node servicing the given job
through the system manager.

Node manager: The node manager provides access to node-level hardware controls
and monitors. Moreover, the node manager implements processor level and node
level power management policies, as well as preserving the power integrity, security
and safety of the node. For this reason, all the power management requests coming
from the software stack are mediated by the node management. The node manager
is able to access in-band' and/or out-of-band? node-granular power knobs.

Workflow engine: The workflow engine analyses the dependencies and resource
requirements of each workflow and decides on how to break the workflow into specific
jobs that will be fed to the system manager. Modern workflows may be composed of
hybrid Big Data, Machine Learning and HPC jobs; hence a key role for the workflow
engine is to provide the right interfaces and abstractions in order to enable the
expression and deployment of combined Big Data, HPC jobs. The distribution of jobs
can vary depending on the objective goals defined by the optimization strategy.
Monitor: The monitor is responsible for collecting in-band and out-of-band data for
performance, resource utilization, status, power and energy. The monitor operates
continuously without interfering with execution, with minimal footprint, and collects,
aggregates, records, and analyses various metrics, and pushes necessary real-time

' In-band communication refers to a communication paradigm that requires a regular operating system
to access the target service [4]. One prominent example is MSR-based monitoring/controlling features
using rdmsr/wrmsr instructions.

2 Qut-of-band communication does not require an OS for its interaction with the target service [4]. One
prominent example is measurement/control via BMC (Baseboard Management Controller) which is a
special controller embedded in a node, often implemented in a form of SoC that operates
independently from the node OS.
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data to the system manager, the node manager and the job manager. The monitor
has the following sub-modules.

e Signature Handler: The signature handler receives the information of job
identification from other components and then generates the signature to
characterize the job. The signature could be calculated with the job
information given by the user, the associated job profile of previous runs, or
the statistics acquired at runtime.

e Estimator: The estimator assesses the job properties (e.g. performance,
power/energy consumption, or others) or system status (e.g. anomaly) by
using such as the signature generated by the signature handler.

e Dashboard: The dashboard provides a set of functionalities that display the
node/job status obtained at runtime (or given from a profile) to the developer.

6. REGALE Common Library: This is a software module newly introduced in the
project. This new layer bridges and co-ordinates different components via API
functions to realize our use cases. This common library stands over the DDS (Data
Distribution Service) middleware that works in a publish—subscribe pattern. Our
approach is agnostic to the actual DDS implementation (the same as other standards
such as OpenMP, MPI, etc.) and the choice of the DDS implementation (e.g.,
OpenDDS, FastDDS, etc.) determines the overhead of power and resource
management, and other properties.

TABLE 1 represents the coverage of the architectural components by our software tools.
Note, the details of our software tools are described in our previous deliverables. In REGALE
project we introduced the following new software modules:

e Execution Profile Compute Module (EPCM) is newly introduced to help our OAR-BEO
integration plugin with providing functionalities to estimate the power/performance
properties based on the relevant job profile.

e REGALE Common Library: identical to the component mentioned above.

These tools are integrated based on their coverages, and we offer several different
integration instances (or scenarios) that support different use cases which we present later in
this deliverable. Also, we first divided our software integration tasks into PowerStack and
workflow engine paths, and the latter consists of Mellissa path and RYAX path. On one hand,
the PowerStack path aimed to prototype a software stack to enable full-scale
production-grade solutions for a variety of power/energy management use cases. On the
other hand, the workflow engine paths focused more on the application side, i.e., integrating
the workflow management tools (Mellissa or RYAX) with our pilot applications as well as
other components in our architecture, in order to realize next-generation application
management techniques including automatic parameter sensitivity analysis, ML-based
simulation surrogate and dynamic concurrency controlling. The PowerStack and workflow
engine paths were first integrated individually because of their different focuses, and we
combined them in some prototypes in the later stage of the project. In this work package, we
mainly focused on the PowerStack path to define use cases and their requirements. We then
merged them as a sophisticated use case in addition to those in WP2.
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Melissa

TABLE 1: Tool Coverage

RYAX

OAR

Slurm

BeBiDa

EAR

BEO

PULPcontroller

BDPO

COUNTDOWN

Examon

DCDB

EPCM

REGALE Lib

* EAR and BEO have their own database as well.
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4. Use Cases and Requirements

In this section, we first describe a big picture of our use cases encompassing PowerStack,
workflow engines, and sophistications. We then introduce common requirements all the use
cases need to follow. Next, we describe per-component requirements for each use case.

4.1 High-level Overview

Figure 2 illustrates an overview of our power and resource management, with a particular
focus on extreme-scale HPC systems. In the early stage of the project, we had three different
software integration paths: (1) PowerStack, (2) Melissa, and (3) RYAX paths. In the
PowerStack path, we first inherited a strawman architecture as well as its use cases
considered in the HPC PowerStack community [1], and we then extended them to realize our
prototyping and integrations. On the other hand, the latter two paths dealt with the
integrations of pilot applications with our workflow engine tools. These different paths were
converged into one as shown in the figure.

System Requirements

System Power Cap ‘ (e.g., Electricity, Budget, Carbon etc.)

Extreme-Scale System Admin
.
PowerStack Path ] Workflow Power Cap Cluster/Node Power Caps (OOB)
PouerStack Path gy - - U ¥
Cluster Power Caps RIMS Job Power Ca -
p Melissa Path @ ryax RYAX Path
R N MELISsA
Job Power Ca Job Power Cap LI UL L0
“ Sl === SEEREEEsEs
. I Engine R I [ |
3 %%% V1 Cluster/Node Power Caps NT:::S Submit Big Data Jobs || HPC Batch Jobs
B Nodes bt A : .
HEN ] = = . :
~ l:“:“:l l:l :”:H:‘ E”:Hj ) Elastic *
Dl:”:‘ § N :lDD DDD Transition
NEEN g . l:”:“:d”:‘D Dl:r\llgllsz“:] Virtualized Baremetal
° Nodes Nodes Nodes
OO é | 0OOO000 ode ode
Nodes l_u § Clusters/Nodes ° ° DDE“:": :]DD DD
Small Jobs within a Cluster A Large Job across Clusters WotkiicwFLEvELRETDNENST
Traditional HPC Jobs Extreme-scale Ensemble Runs using Melissa RYAX Enabled Clusters/Nodes

S —
“ System-wide Monitoring

Figure 2: Holistic, Hierarchical, and Scalable Power/Resource Management

The REGALE PowerStack path considers hierarchical power management as follows. First,
the system administrator determines the total system power budget and sets the system-wide
power cap in accordance with electricity cost, remaining budget, carbon efficiency of the
power grid, and so forth. Next, the system power budget is distributed across compute
clusters depending on their needs. Then, on each cluster, the assigned power budget is split
into the jobs running on the cluster. Finally, the job power budget is divided into per-node
power budgets, and the power cap is set on each node. This is the case when we handle
smaller jobs than a cluster (e.g., 1K nodes) associated with small-job queues. In the case of
running a job larger than the above cluster size, one option is forming a cluster of clusters
and determining the power cap to it first, and then we set the job power cap within the bound.
In this hierarchical power management scenario, we consider different levels of
sophistications from different angles (e.g., dynamic or static).
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The Melissa path realizes sophisticated ensemble runs for sweeping a given parameter
space, i.e., running an application continuously while changing the inputs. The Melissa
workflow engine interacts with the RIMS and decides the concurrency, i.e., the number of
jobs running at the same time, depending on the available compute nodes on the system,
and several pilot applications were integrated with the tool in the REGALE project. The
REGALE PowerStack was extended to support this use case, i.e, the concurrency should be
restricted also by the remaining power budget, not limited to the remaining node resources,
while taking the power hungriness of jobs into account. To this end, the workflow engine
needs to interact also with the system power manager to obtain the usable power budget and
with the power estimator to decide per job power budgeting.

The RYAX path enables dynamic Big Data/Al workloads (i.e. Spark) to be executed on HPC
environments in an elastic manner. The technique is based on Kubernetes managing the
dynamic workload on the HPC side as low-priority HPC jobs through prolog/epilog scripts on
HPC scheduler (Slurm, OAR, etc). It provides a feature to dynamically change/trade the
scales of virtualized/baremetal regions. The major objective is to minimize the turnaround
time of BD jobs with deadline/time-critical aware optimizations. In the REGALE project, we
did not explore a sophistication to coordinate this elastic resource management and power
budgeting across virtualized/baremetal nodes, however the RYAX path can co-exists with the
PowerStack path — one option is forcing the cluster/node power cappings via out-of-band
power knobs controlled by the system/node power manager.

4.2 System Requirements

System Architecture: The REGALE project targets both CPU-only homogeneous and
CPU-GPU heterogeneous compute nodes. Here, we assume the node hardware architecture
is uniform across all compute nodes. Future exa-scale systems could consist of multiple
different types of clusters (e.g., Jupiter’s modular architecture [5]), and our approach is
applicable to each of them separately and independently. The coordination between different
clusters by trading the power budgets across them is not covered by the project and would
be one of our major future challenges. In our target systems, we apply our power
management technique particularly to compute nodes, which is because they are the major
power consumers in modern HPC systems, and other system components such as 1/O
nodes, cooling facilities, network infrastructures are not in the loop of our power
management.

Power Knobs: The overall power management is governed by the system power manager
daemon launched on the scheduler (or admin) nodes. More specifically, the system power
manager (SPM) distributes power budgets across clusters/nodes, which could be in a closed
or open loop manner. The closed-loop control makes power budget decisions based on the
actual power consumptions, while the open-loop option does not utilize them. The node
manager and the monitor are distributed across the compute nodes, and they are responsible
for the in-/out-of-band power setups and measurement on each node.

In order to exchange power budgets across different kinds of hardware components, we
need a common currency valid among them. For this reason, we require all the target
hardware to support a power capping interface to set up the upper limit wattage, regardless
of the internal hardware power control features. The power capping needs to be conducted in
a closed-loop manner, i.e. the power consumption needs to be measured internally to
configure the low-level power control setup (e.g. clock frequency) in an adaptive manner so
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as not to exceed the given power cap. Further, the interface needs to offer the measured
power consumption to the overlying software stack. This is required especially for a
system-wide closed-loop power management use case — for instance, the node manager
detects an unused power budget and gives the extra budget back to the system manager.
The left diagram of Figure 3 dipicts a software/hardware interface that meets the above
requirements. Note, they are commonly supported in modern hardware components (e.g.,
RAPL [6] for CPUs/DRAMSs, and NVML for NVIDIA GPUs [7]), while others such as cooling
facilities generally do not offer them and thus require an additional software layer to set a
power cap.

From/fdo upper-level controller From/#to upper-level controller

" Pow | Temp E " N
Power Cap Power Cap | Cap | 4 Pow [Temp
Pow Cap Interface Pow & Temp Cap Interface |
Freq | ¢ ) | Power Freq | ) Pow |Temp

Closed .fadp corntrol Closed f&rﬂp control
HW Component HWW Component
(e.g., CPU, GPU, {e.g., CPU, GPU, DRAM)
DRAM)

Figure 3: Hardware Interface Requirements

Further Hardware Knobs: A thermal capping capability is also required for several use
cases. To this end, the hardware components need to support the following functionalities,
similar to the requirements for the power capping feature. First, the thermal cap interface
needs to be accessible by the overlying software. Second, the thermal cap is strictly followed
by using a closed-loop hardware control. Third, the current temperature needs to be visible
also for the overlying software stack so that temperature anomalies become detectable. The
right image of Eigure 3 illustrates these requirements. The thermal capping feature is widely
supported in modern commercial processors. They usually have a temperature controlling
hardware to prevent overheating, and if the temperature exceeds a predetermined threshold
(usually set very high such as 80°C), the hardware module attempts to throttle the throughput
by scaling down the clock frequency, thinning out the clocks, or any other throttling
mechanisms. The thermal threshold is exposed to the operating system layer for various
processors [8]. Also, the thermal capping can be handled by several node manager tools,
such as PULP Controller, BEO, and EAR.

As mentioned above, the power and thermal capping features rely on the clock frequency
(and voltage) scaling which almost all the commercial processors support. Several use cases
also require direct access to the clock frequency setup in order to trade-off power and
performance while keeping the power and thermal constraints (e.g., minimizing energy while
keeping the power and thermal constraints). Therefore the clock frequency setup interface is
also required for them.

Site Administrator’s Inputs: The system administrator plays an important role in our
architecture and several use cases. He/she first clarifies their requirements, sets the goal for
the system optimization, determines the exact constraints to meet the requirements, and then
selects a right management policy with optimal parameter setups to achieve the goal under
the given set of constraints. The requirements here are broad encompassing system
performance, economical budget, carbon emission requirement, infrastructure limitations,
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user experiences, etc. We regard the conversion from these requirements into the policy
selection and parameter setups as given by the system administrator, however we would
explore this aspect as well in future work (e.g. automatically determining the total system
power boundary based on the current carbon efficiency of the power grid).

4.3 Format definition to specify use cases and requirements

In this section, we define the description format of our use cases and their requirements. In
general, power and resource management can be described as an optimization problem, i.e.,
maximizing or minimizing one or more objective function(s) under one or more constraint(s).
To this end, power and resources are managed in a hierarchical manner, and they are
controlled in each layer at a certain temporal/spatial granularity. To define our use cases, we
consider the following factors:

Optimization objectives

Constraints

Finest temporal granularity of decisions
Power management decision levels
Resource management sophistications

U A

The first two are to describe the management as an optimization problem, and the rest of
them characterize the knobs used to solve the problem. Each use case has a certain level of
sophistication for each of the above factors. TABLE 2 lists the level definitions. In the
REGALE project, we considered three levels, but we would extend these levels to four or
more in future work.

TABLE 2: Different sophistication levels

One (system wide or Multiple objectives

None (e.g., both system
app focused) wide & app focused)
One (power Two (e.g., power + More (e.g., power +

temp + anomaly

resource mgmt)

moldable scheduling)

constraint only) temperature) detectable)
Statlc’: (as per Static (when job Dynamic at runtime
human’s request) launch)
Multi-layered
One autonomous -
None or human only . autonomous decision
decision maker
makers
None (power mgmt One (e.g., Multiple (e.g.,
is orthogonal to energy-aware moldability +

co-scheduling)
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1. Optimization objectives: One or more objective functions are usually set to determine the
goal of optimization in a power/resource management. An objective can be system wide
(e.g., maximizing total system throughput or energy-efficiency) or an application-level one
(e.g., minimizing application runtime or energy consumption). As we also assume a
multi-level resource/power management, there can be multiple objective functions. As an
extreme case, the most naive one does not have any objective functions, but just sets power
management knobs to functionally enforce constraints without any optimizations.

2. Constraints: We consider one (or more) constraint(s) are set when controlling power
management knobs. By default, we assume a system-wide power constraint is set (Level 1)
due to an increasing demand for operating supercomputers under a certain power boundary.
We then regard temperature as the next-level constraint and is manageable by several
REGALE tools (Level 2). Note, in case we have no objective function, we only enforce the
limits but do not optimize anything. We further extend the concept of constraints to set the
anomaly tolerability/detectability as a requirement (Level 3).

3. Finest temporal granularity of decisions: The temporal granularity of an optimization
also reflects how well it is sophisticated. The most naive optimization (Level 1) is that the
decision happens only when it is requested by the human actor (e.g., site admin). The next
step is that the optimization is applied per job launch (Level 2), however the control state is
constant until a new job is launched. The most sophisticated one (Level 3) is optimizing
power and resources dynamically at runtime. As the power/resource management can be
hierarchical, we consider the finest granular one here.

4. Power Management Decision Levels: Here, we define the sophistication levels of power
management. The most naive one is that all power control knobs are manually set by a
human actor (Level 1). We also select the Level 1 for a use case if power management is not
relevant and is completely orthogonal to it. Then, the next level is that the power control
decision is made automatically by only one decision maker in the power control loop (Level
2). The most sophisticated one is that the power management is formed in a hierarchical
manner, and multi-layered power controllers interact with each other to optimize the power
knob setups (Level 3).

5. Resource management sophistications: Several use cases deal with resource
assignment decisions (compute nodes, in-node components, etc.), but others do not. If a use
case is completely orthogonal to resource assignment decisions, we choose Level 1. As a
next step, if a use case manages resource assignments (e.g., scheduling decisions, node
resource partitions, concurrency scaling in ensemble runs, etc.), we select Level 2. If a use
case manages multiple factors of resource assignments (e.g., co-scheduling moldable jobs),
then it is considered Level 3.

We then specify the requirements for all the components/actors except for the Regale
common library layer to realize each use case:

Site Admin

Users/Developers

Workflow Engine

System Manager (RJMS/SPM)
Job Manager

arwbd-=
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6. Node Manager
7. Monitor (Dashboard/Signature Handler/Estimator)
8. HW Knobs

Site Admin can have one or more roles in several use cases. One example is interacting
with the system to set up the total system power constraint.

Users/Developers also can have some roles for optimization as well. As an example, for a
user-level power or energy optimizations, they need to link some relevant libraries to their
codes. Another example is that setting up some environmental variables in their job scripts
could be required to enable some features.

Workflow Engine: our workflow engine tools are involved in several use cases, and their
requirements are specified for them.

System Manager (including RJMS and SPM), Job Manager, Node Manager, Monitor are
the software components included in the REGALE architecture (see Figure 1). Some use
cases need to coordinate all of them while others may need only some of them. The
requirements highly depend on all the aspects that determine the use cases (objectives,
constraints, etc).

HW Knobs are essential to realize our PowerStack use cases because they rely on the
functionalities the HW knobs offer. We specify the requirements per use case.

Note, we do not list the REGALE common library layer here because it functions rather as a
communication abstraction layer across modules, but it does not offer its own functions to
realize a use case. The above modules interact with each other directly or via the common
library layer depending on if the function is implemented in the layer or not. Note, the
REGALE project envisions porting all the necessary API functions to this layer. The details of
the interfaces for the common abstraction layer will be described in Section 5.

4.4 Requirement Specifications per Use Case

In this section, we introduce our target use cases and list the requirements for each of them.
We first start from basic use cases to realize the PowerStack path, then move on to
standard/advanced ones, and finally introduce leading use cases encompassing resource
management sophistications via elastic resource management using workflow engines or
co-scheduling, i.e., co-locating multiple jobs on the same nodes at the same time.

4.3.1 Basic PowerStack Use Cases

The most basic one is that the site administrator designates the total system power boundary,
and then the node power capping is enforced on all compute nodes uniformly to keep the
boundary without any optimizations. This power control just follows the human instruction,
and the job scheduling and resource assignment optimizations are not coordinated with this
power capping. Therefore, all the factors listed in TABLE 2 are Level1 for this use case. This
is summarized in TABLE 3.
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TABLE 3: Requirement Specifications for Basic Power Capping (Basic)

[Basic] Keep my
system under power
cap

Note:

Providing system-level
power capping
functionality w/o any
optimizations; power
budget is distributed
evenly across nodes;
Open-loop control w/o
using measured power
at runtime

Objectives: None (Level1)

Constraints: Power
(Levell)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Levell)

Power Management
Decision Levels:
Determined only by human
(Levell)

Resource Management
Sophistications: None
(Levell)

Site Admin: Set power cap to
System Manager (e.g., 1MW)

Users/Developers: None

Workflow Engine: None

System Manager:
Capability/interface to talk to
each node manager to set
power cap to them; HW profiling
functionality to obtain the range
of power consumption when
scaling the target knob; Report if
the power budget setup is
outside of the range or if a
significant power budget
violation happens

Job Manager: None

Node Manager: Communicate
with HW and set up the power
cap based on the instruction by
the system manager; report if an
error/anomaly happens to the
system manager

Monitor: None

HW Knobs: Node-level power
capping capability (in-band or
out-of-band)

We then move this use case one step further with respect to the constraints. More
specifically, we augment the temperature capping functionality to Basic — here, we call this
use case Basic+. Note that to apply this thermal capping along with the power capping, we
need a proper interface as described in Section 4.1. TABLE 4 summarizes the requirements
to support this use case. Aside from the necessity for the temperature capping interface, the
requirements are almost the same as those of Basic.

TABLE 4: Requirement Specifications for Basic Power and Thermal Capping (Basic+)
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[Basic+] Keep my
system under power
and thermal caps

Note:

Providing system-level
power and thermal
capping functionality
w/o any optimizations;
power budget is
distributed evenly; the
same temperature
setup for every node;
Open-loop control w/o
using measured power
nor temperature at
runtime

Objectives: None (Level1)

Constraints: Power and
temperature (Level2)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Levell)

Power Management
Decision Levels:
Determined only by human
(Levell)

Resource Management
Sophistications: None
(Levell)

Site Admin: Set power and
thermal caps to System
Manager (e.g., 1MW & 50°C)

Users/Developers: None

Workflow Engine: None

System Manager:
Capability/interface to talk to
each node manager to set
power and temperature caps to
them; HW profiling functionality
to obtain the range of power
consumption when scaling the
target knob; Report if the power
budget setup is outside of the
range or if a significant power
budget violation happens

Job Manager: None

Node Manager: Talk to HW and
set up power and thermal caps
based on the instruction by the
system manager; report if an
error/anomaly happens to the
system manager

Monitor: None

HW Knobs: Node-level
power/thermal capping
capability (in-band or
out-of-band)

In TABLE 5, we extend Basic+ by adding the anomaly detectability requirement, which we
call Basic++ here. If a target hardware region violates the power or thermal limits more than
a certain threshold longer than a predetermined duration, this should be reported. Here, we
just consider the detection and report functions, but in the future deliverables, we will cover
more sophisticated options such as an anomaly tolerance option with automatic anomaly
handling methodologies. An anomaly can happen at a variety of granularity levels, and thus
anomalies should be detectable at all the software components. In the future work, the
anomaly detection, correction, and mitigation should be realized at different levels in a
hierarchical manner: (1) application; (2) subsystem; (3) node; and (4) room level. We can
consider a variety of use cases even only on anomaly handling methodologies for different

scenarios or target hardware.

TABLE 5: Requirement Specifications for Basic Power and Thermal Capping with
Anomaly Detectability (Basic++)
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[Basic++] Keep my
system under power
and thermal caps with
anomaly detectability

Note:

Providing system-level
power and thermal
capping functionality
w/o any optimizations;
power budget is
distributed evenly; the
same temperature
setup for every node;
Open-loop control w/o
using measured power
nor temperature at
runtime; Anomaly is
detectable at any
components

Objectives: None (Level1)

Constraints: Power and
temperature constraints +
anomaly detectable (Level3)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Power Management
Decision Levels:
Determined only by human
(Levell)

Resource Management
Sophistications: None
(Level1)

Site Admin: Set power and
thermal caps to System
Manager (e.g., 1MW & 50°C);
Handle anomaly node reported
by System Manager

Users/Developers: None

Workflow Engine: None

System Manager:
Capability/interface to talk to
each node manager to set
power and temperature caps to
them; HW profiling functionality
to obtain the range of power
consumption when scaling the
target knob; Report if the power
budget setup is outside of the
range or if a significant power
budget violation happens;
Anomaly detection/report
function in terms of power and
temperature (reported by other
components); Report when
anomaly is detected to site
admin

Job Manager: Report if an
error/anomaly happens to the
system manager

Node Manager: Interact with
HW and set up power and
thermal caps based on the
instruction by the system
manager; report if an
error/anomaly happens to the
system manager

Monitor: Provides information
on facility and nodes anomalies

HW Knobs: Node-level
power/thermal capping
capability (in-band or
out-of-band)
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Figure 4: Sophistication Level Coverage by Basic PowerStack Use Cases

Figure 4 illustrates the sophistication levels covered by the above basic PowerStack use
cases. As they are all naive use cases with offering functions to enforce power/thermal
capping or to detect anomalies, these covered areas are small.

4.3.2 Standard PowerStack Use Cases

Next, we extend the Basic use case by optimizing the hardware power management knob
setup while following a given objective function. Here, we cover the following objectives:
maximizing total system throughput (SysThru); minimizing total system energy (SysEne);
maximizing application performance (AppPerf); and minimizing application energy-to-solution
(AppEtS). For all of these use cases, we assume the site administrator sets the power
constraint to the entire cluster/system, and then we optimize the power budgeting across
these jobs or nodes while keeping the constraint to achieve a given objective. In this sense,
we handle multi-level constraints (thus constraint level is at least 2). There are two options in
the decision timing: static or dynamic. For the static option, all the decisions are statically
given in a proactive way, while for the dynamic option, they are reactive using runtime
information. TABLE 6 describes the definition/requirements for each of these options. Here,
we consider power is only the constraint, however this can be extended to cover more
constraints by adding requirements listed in Basic+ or Basict++. Another option for the
constraints is considering average or maximum application performance degradation. For
SysThru, we consider closed-loop power controls in these use cases, i.e., we dynamically
adjust the power management knob in accordance with the measured power consumption
and resource utilizations at runtime. These measurements are used for estimating the power
demand of a node by the Node Manager, which is then sent to the System Manager to
redistribute the power budgets across nodes. SysEne is almost the same as SysThru except
for the objective function and an option to scale down the total power budget allocated to the
entire set of compute nodes, which could improve energy efficiency but wouldn’t improve
throughput. On the other hand, AppPerf and AppEtS are application level (or user level)
optimizations, while the system manager does not autonomously optimize the power budget
assignments across jobs/nodes. In these use cases, we utilize application profiles of
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previous/test runs (static) or runtime information (dynamic), which are provided by Monitor.
By analyzing the profiles, Job Manager decides the setups of the target power management
knob (CPU power cap, CPU clock frequency scaling or any others) as well as performs code
tuning as an option. One needs to link the specific libraries to the code to realize these

application level options.

TABLE 6: Requirement Specifications for Standard PowerStack Use Cases

[SysThru] Maximizing
total system throughput
under power cap

Note:

Optimize power budget
allocations across
nodes under the total
system power cap so
that the total system
throughput can be
maximized;
Closed-loop power
management at runtime
or profile-driven
proactive approach;
Assuming over
provisioned situation;
Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

Objectives: Max system
throughput (Level2)

Constraints: Two-level
power capping: system +
job/node (Level2) — or
extensible to include more
(Level3)

Temporal Granularity:
Statistically set at runtime
(Level2) or dynamically
adjusted at runtime (Level3)

Power Management
Decision Levels: System
manager optimize the power
budget distributions based
on the job characteristics
(Level2)

Resource Management
Sophistications: None
(Levell)

Site Admin: Set power cap to
the entire system via System
Manager (e.g., TMW)

Users/Developers: None

Workflow Engine: None

System Manager: All the
functionalities supported in
Basic;

A profile-based power budget
decision making (static);
Periodical power budget
redistribution function based on
the reported unused power and
power budget request by Node
Manager (dynamic); Power
budget distribution algorithm to
maximize throughput

Job Manager: None

Node Manager: All the
functionalities supported in
Basic;

Policy to detect whether the
node needs less/more power
budget and report it to System
Manager (dynamic)

Monitor: Providing monitoring
data to SPM and Node Manager
when dynamically adjust the
power cap; Providing
power/performance estimation
to other actors

HW Knobs: Node-level power
(& thermal if needed) capping
capability (in-band or
out-of-band)

[SysEne] Minimizing

Objectives: Min system

Site Admin: Same as SysThru

25




total system energy
consumption under
power cap

Note:

The requirements are
almost the same as
those for SysThru;
Need to update the
power distribution
policy/algorithm from
SysThru, in particular
Node Manager level;
Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

energy consumption
(Level2)

Constraints: Two-level
power capping: system +
job/node (Level2) — or
extensible to include more
(Level3)

Temporal Granularity:
Statistically set at runtime
(Level2) or dynamically
adjusted at runtime (Level3)

Power Management
Decision Levels: Job
manager optimize the power
knob setup based on the job
characteristics (Level2)

Resource Management
Sophistications: None
(Levell)

Users/Developers: None

Workflow Engine: None

System Manager: Same as
SysThru; Scaling down total
system cap adaptively is an
option

Job Manager: None

Node Manager: Same as
SysThru but need updates in the
power budget request policy,
i.e., detecting the optimal power
mgmt knob setup to minimize
energy (or maximize energy
efficiency)

Monitor: Providing monitoring
data to Node Manager when
dynamically adjust the power
cap; Providing
power/performance/energy
estimation to other actors

HW Knobs: Same as SysThru

[AppPerf] Maximizing
application performance
under job power cap

Note:

System manager allows
privileged users to
control power knobs,
but does not
necessarily apply any
optimization (same as
basic); Job manager
handles the power knob
setups while keeping
the given job power
budget; Adding more
constraints is an option
(e,9., thermal cap)

Objectives: Max application
performance (Level2)

Constraints: Two-level
power capping: system + job
(Level2) — or extensible to
include more (Level3)

Temporal Granularity:
Statically set when job
launch (Level2) or
dynamically adjusted at
runtime (Level3)

Power Management
Decision Levels: Job
manager optimize the power
knob setup based on the job
characteristics (Level2)

Resource Management
Sophistications: None
(Level1)

Site Admin: Same as SysThru;
Allow user level (or Job
Manager level) power
management

Users/Developers: Link the
relevant library (provided by Job
Manager) to their code

Workflow Engine: None

System Manager: Same as
Basic

Job Manager: Power-aware
code tuning functionality using
code analysis or profile-based
optimization; Accessible power
management knobs (power cap,
clock freq, etc.)

Node Manager: Same as Basic
except that it needs to provide
an interface to let Job Manager
know the current power knobs
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and allow it to further optimize
them

Monitor: Providing monitored
stats to Job Manager

HW Knobs: Same as SysThru

[AppEtS] Maximizing
energy to solution for
app under power cap

Note:

Almost same as
AppPerf except that the
objective is minimizing
energy; Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

Objectives: Minimize
application energy to
solution (Level2)

Constraints: Two-level

power capping: system + job
(Level2) — or extensible to

include more (Level3)

Temporal Granularity:
Statically set when job
launch (Level2) or
Dynamically adjusted at
runtime (Level3)

Power Management
Decision Levels: Job

manager optimize the power
knob setup based on the job

characteristics (Level2)

Resource Management
Sophistications: None
(Levell)

Site Admin: Same as AppPerf

Users/Developers: Same as
AppPerf

Workflow Engine: None

System Manager: Same as
AppPerf

Job Manager: Same as
AppPerf except that the
optimization policy must be
updated.

Node Manager: Same as
AppPerf

Monitor: Same as AppPerf

except that the optimization
policy must be updated.

HW Knobs: Same as AppPerf

5. Resource
Management

1. Objectives
Lv3

Lv2

Ty

b
“h
-

4. Power
Management

SysThrwEne or AppPerf/EtS (static) == == == SysThru/Ene or AppPerf/ELS (dynamic)

2. Constraints

- - _!3. Temporal
Granularity

Figure 5: Sophistication Level Coverage by Standard PowerStack Use Cases
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Figure 5 illustrates the sophistication levels covered by the above standard PowerStack use
cases. Note, they can also cover more constraints such as thermal capping.

4.3.3 Advanced PowerStack Use Cases

We then present our advanced PowerStack use cases: SysThru&AppEtS, NodPowShft,
SchedOpt, and PowAwrEns, each of which is an extension of one or more of the standard
use case(s) listed in Section 4.3.2. TABLE 7 lists their definition, sophistication levels, and
requirements. First, SysThru&AppEtS is a combined version of two standard use cases
(SysThru and AppEtS) — we globally attempt to maximize the throughput under a
system-wide power bound by optimizing the power budget distributions among jobs or nodes
(SysThru), while at the same time we locally try to minimize the energy-to-solution of a job by
controlling the hardware knobs while keeping the given power budget. Second, the
NodPowShift use case is an extension of one of the standard use cases (or
SysThru&AppEtS), i.e., we further shift power among components within a node (CPU, GPU,
memory, etc.) while keeping the given node power cap. Third, SchedOpt is another type of
extensions for SysThru/Ene, i.e., in addition to optimizing power budget distributions across
nodes/jobs, we further optimize job scheduling decisions. One option is power-/energy-aware
moldable backfilling, i.e., changing the scale of a backfilling job so that it fits for both the
available number of nodes and available power budget as well. Another option is reducing
the power bound of currently running jobs in order to obtain sufficient power budget to launch
a target job. Finally, PowAwrEns enables power-aware ensemble runs by combining the
workflow engine with the standard system-wise power management use cases (SysThru or
SysEne).

TABLE 7: Requirement Specifications for Advanced Use Cases

[SysThru&AppEtS]
Maximizing total system
throughput under power
cap while minimizing
job energy-to-solution;
This is a combined use
case applying both
SysThru and AppEtS at
the same time

Note:

Optimize power budget
allocations across jobs
under the total system
power cap so that the

Objectives: Max system

throughput + min job energy

to solution (Level3)

Constraints: Two-level

power capping: system + job

(Level2) or extensible to
include more (Level3)

Temporal Granularity:

Statically set when job launch

(Level2) or dynamically

adjusted at runtime (Level3)

Power Management

Site Admin: SysThru +
AppEtS

Users/Developers: SysThru +
AppEtS

Workflow Engine: None

System Manager: SysThru +
AppEtS

Job Manager: SysThru +
AppEtS

Node Manager: SysThru +

total system throughput
is maximized; Job
manager further

Decision Levels: System
manager optimize the power
budget distributions based on

AppEtS

Monitor: SysThru + AppEtS

optimizes the power
knobs to minimize the
application’s
energy-to-solution while
keeping the job power
boundary; Adding more

the job characteristics
(Level3)

Resource Management
Sophistications: None
(Level1)

HW Knobs: SysThru + AppEtS
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constraints is an option
(e,g., thermal cap,
application speed-down
limit); Static or dynamic
power management

[NodPowsShft]
Optimizing node
performance/power/ene
rgy by shifting power
among node
components

Note:

This is an extension of
the standard use cases
or SysThru+AppEne by
shifting power budgets
among different
components within
each node; The
component- wise power
capping is directed by
either Job manager
(user level) or Node
manager (system level)

Objectives: Multi-objective
optimization — (max/min
system throughput/energy or
max/min application
performance/energy) and
max/min node perf/energy
(Level3)

Constraints: Three-level
power capping: system +
job/node + component
(Level3)

Temporal Granularity:
Statically set when job launch
(Level2) or dynamically
adjusted at runtime (Level3)

Power Management
Decision Levels: System
manager optimize the power
budget distributions based on
the job characteristics and
then Node manager optimize
the power budgeting among
components within the node
(Level3)

Resource Management
Sophistications: None
(Levell)

Site Admin: Same as the
inherited use case

Users/Developers: Same as
the inherited use case

Workflow Engine: None

System Manager: Same as
the inherited use case

Job Manager: Same as the
inherited use case

Node Manager: Needs a layer
to distribute a power cap to
different component; Update
the policy to exploit the above
feature

Monitor: Same as the inherited
use case

HW Knobs: Component-level
power (& thermal if needed)
capping capability (in-band or
out-of-band)

[SchedOpt] Maximizing
total system throughput
(or minimizing total
system energy) under
power cap w/ job
scheduling optimization

Note:

This is an extended
version of the standard
SysThru/Ene use
cases; Scheduling
decision is static based
on job characterization
using profiles provided
by Monitor; Power

Objectives: Max system
throughput or minimize
energy (Level2)

Constraints: Two-level
power capping: system + job
/node (Level2) — or extensible
to include more (Level3)

Temporal Granularity:
Scheduling decisions are
made statically at job launch
(Level2) or dynamically
adjusted at runtime (Level3)

Power Management
Decision Levels: System

Site Admin: Same as
SysThru/Ene

Users/Developers: Same as
SysThru/Ene

Workflow Engine: None

System Manager:
Power-aware scheduling policy
using the historical job statistics
(RIMS); Accessible to system
power status such as
remaining power budget on the
system (RJMS)

Job Manager: Same as
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management part can

manager optimize the power

SysThru/Ene

be dynamic budget distributions based on
the job characteristics Node Manager: Same as
(Level2) SysThru/Ene
Resource Management Monitor: Providing collected
Sophistications: RIMS is job statistics to characterize
involved in the optimization, jobs and assess the impact of
such as energy-aware back power/node assignments
filling (Level2)
HW Knobs: Same as
SysThru/Ene
[PowAwrEns] Objectives: Multi-objective Site Admin: Same as the

Power-aware ensemble
runs by combining the
workflow engine with
PowerStack

Note:

An extension of one of
the standard or
advanced use cases
(SysThru, SysEne, or
their extensions) while
combining with the
workflow engine for
ensemble runs; setting
the power boundary to
the set of ensemble
jobs from a user;
optimizing the job/node
power cap and the
concurrency of the
ensemble runs

— PowerStack side +
workflow engine side (Level3)

Constraints: Three-level
power capping: system +
ensemble set + job/node
(Level3)

Temporal Granularity:
Statically set per job launch
(Level2) or power cap can be
dynamically scaled at runtime
(Level3)

Power Management
Decision Levels:
Multi-layered — PowerStack
side + workflow engine side
(Level3)

Resource Management
Sophistications: the job
concurrency decision is
involved in the power
management (Level2)

inherited use case

Users/Developers: Integrate
their app with the workflow
engine for ensemble runs

Workflow Engine: Receive the
available power in addition to
the available nodes; Decide the
number of jobs to launch

System Manager:

Sending the available power to
the workflow engine; Setting
the power cap to each
ensemble job

Job Manager: Same as the
inherited use case

Node Manager: Same as the
inherited use case

Monitor: Same as the inherited
use case

HW Knobs: Same as the
inherited use case
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Figure 6: Sophistication Level Coverage by Advanced PowerStack Use Cases

Figure 6 illustrates the sophistication levels covered by the above advanced PowerStack use
cases. The SysThru&AppEtS, NodPowShift, and PowAwrEns have hierarchical multi-layered
power optimizers, while there is a single-layered power optimizer (System Manager), but the
RJMS is involved in the power management in the SchedOpt. Further, PowAwrEns changes
the concurrency of ensemble runs based on both the available power and resources through
the interactions between the workflow engine and the SPM/RJMS. Note, they have static and
dynamic options and also can cover more constraints such as thermal capping.

4.3.4 Sophisticated Resource Management beyond PowerStack

We finally present several resource management sophistications explored in the REGALE
project beyond the PowerStack path. TABLE 8 lists the sophistication use cases. The first
three sophistications are completely orthogonal to PowerStack use cases (e.g. Basic via
out-of-band power control) and are applicable with them at the same time. These
sophistications could be potentially combined and coordinated with the standard/advanced
PowerStack use cases in future work, by newly introducing coordination mechanisms. In the
table, the first sophistication (MoldCosh) aims to enable co-scheduling multiple jobs on the
same set of nodes at the same time, in particular using a moldable job scheduling
functionality offered by the RUMS. The second one (NodResPart) also targets co-scheduling
but rather focuses on the optimization of resource partitioning and co-scheduled job
assignments. The third one (ElastSched) offers a coordination mechanism between the
workflow engine and the RJMS in order for launching rigid HPC jobs and elastic big data jobs
simultaneously on HPC clusters to minimize the resource waste (and thus maximize the
system throughput). The last one (MalPowStack) is explored under a collaboration with the
DEEP-SEA project via simulations [9]. In this use case, we consider applying power
management to malleable job scheduling where the node assignment to jobs can be
dynamically scaled at runtime depending on their needs. To realize malleable job scheduling
and resource management, the entire HPC software stack from MPI application to resource
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manager need to be modified. We further consider applying dynamic job power budget

scaling and determine per-node power budgeting as well as job scale.

TABLE 8: Requirement Specifications for Sophisticated Resource Management Use

Cases

[MoldCosh] Mold and
co-schedule a pair of
jobs on the same set of
nodes

Note: Allow the RUMS
to schedule multiple
jobs on the same set of
nodes; Mold a pair of
complementary jobs so
that they fit to the same
set of nodes; Need a
model-based job
characterization to
choose a pair; Can
co-exist with a use case
of PowerStack if it
manages power using
out-of-band knobs and
is independent of the
scheduling decisions

Objectives: Maximize
system throughput +
minimize per-job slowdown
(Level3)

Constraints: System-level
power constraint (Level1) or
more

Temporal Granularity:
Scheduling decisions are
made at job launch (Level2)

Power Management
Decision Levels: Power
management decision is out
of scope by default (Level1),
could be coordinated with a
multi-layered power control

Resource Management
Sophistications: Job
moldability support + node
sharing support (Level3)

Site Admin: Setup a queue
that allows co-scheduling

Users/Developers: Specify
moldable and co-scheduling
options in the job script

Workflow Engine: None

System Manager: Supports of
moldable resource assignment
and node sharing (or job
overcommit) functions in
RJMS; Implementation of a job
scheduling algorithm tailored
for co-scheduling moldable
jobs in RUIMS

Job Manager: None

Node Manager: Support a
functionality for binding node
resources (cores, CPUs, etc.)
to the co-located jobs and
provide it to the system
manager

Monitor: Characterize jobs
based on their profiles

HW Knobs: None

[NodResPart]
Node-level resource
partitioning optimization
for co-scheduled jobs

Note: Optimize node
resource partitioning
and assignments to
co-scheduled jobs; a
model-based
optimization using job
characteristics; can
operate under a given
node power cap

Objectives: Maximize
system/node throughput +
minimize per-job slowdown
(Level3)

Constraints: System- &
node-level power constraints
(Level2) or more

Temporal Granularity:
Static decision when job
launch (Level2) or dynamic at
runtime (Level3)

Power Management

Site Admin: Setup a queue
that allows co-scheduling

Users/Developers: Submit
their jobs to the co-scheduling
queue

Workflow Engine: None

System Manager: Support a
node sharing (or job
overcommit) functionality and a
co-scheduling algorithm in
RJMS
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Decision Levels:

Power control decision is
out-of-scope by default
(Level1), could be extended
to coordinate with a
multi-layered system- + job- +
component-wise control
(Level3)

Resource Management
Sophistications:

Job pair selections, job
allocations, and node
resource partitioning (Level3)

Job Manager: None

Node Manager: Support a
function to optimize resource
partitioning knobs and job
allocations to the partitioned
node regions

Monitor: Characterize jobs
based on their profiles

HW Knobs: A resource
partitioning feature on the
target component to control job
QoS

[ElastSched]
Convergence of elastic
big data workloads and
traditional HPC jobs in
an HPC cluster

Note: Users/developers
submit/develop their big
data or HPC workflow
by using the workflow
engine; submitted
workflows are executed
on the big data or HPC
partition inside an HPC
cluster; the system
manager dynamically
adjusts the partition to
minimize the resource
waste

Objectives:

Minimize resource waste +
improve usability/flexibility
(Level 3)

Constraints: System power
constraint (Level 1)

Temporal Granularity:
Dynamic at runtime (Level 3)

Power Management
Decision Levels: Power
management decision is out
of scope by default (Level1),
could be coordinated with a
multi-layered power control

Resource Management
Sophistications: Elastic
partitioning between the big
data and HPC region by the
meta scheduler + job
scheduling inside of each
region (Level 3)

Site Admin: Configure a
partition to divide a cluster into
big data part (virtualized) and
HPC batch job part (baremetal)

Users/Developers: Develop
their code using the workflow
engine

Workflow Engine: Provide Ul

to describe a workflow; interact
with the RJMS to submit elastic
big data or rigid HPC workflows

System Manager: Support a
meta scheduling function to
submit jobs accordingly to the
partitioned regions (RJMS);
adjust the partition based on
their needs (RIJMS); have a
VM/batch scheduler internally
in each region (RJMS)

Job Manager: None

Node Manager: Deploy a
containerized environment to
offer big data workload
software stack or MPI-based
HPC software stack

Monitor: None

HW Knobs: None

[MalPowStack]
Power-aware malleable
job scheduling

Objectives: Maximize
system throughput +
maximize app perf (Level 3)

Site Admin: Set power cap to
the entire system via System
Manager (e.g., 1MW)
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Note: Target malleable
MPI jobs; Dynamically
scale the job power
budgets to the currently
running jobs; Decide
the job scale and
per-node power budget
for each malleable job

Constraints: System + job +
node power constraints
(Level3)

Temporal Granularity:
Dynamic at runtime (Level 3)

Power Management
Decision Levels: Per-job
power budgeting + per-node
power budgeting (Level3)

Resource Management
Sophistications: the RIMS’s
job launch decisions + the job
manager’s resource
allocation decisions (Level3)

Users/Developers: Develop
their code using malleable MPI

System Manager: Support
dynamic resource add/remove
for malleable MPI jobs (RIMS);
support dynamic job power
budgeting while setting total
system power cap (SPM)

Job Manager: Set num of
nodes and per-node power cap
based on scalability for a given
job

Node Manager: Access
hardware power knobs to keep
the given node power cap

Monitor: Dynamically report
job statistics; analyze job
scalability in power budget and
num of nodes

Workflow Engine: None

HW Knobs: Node-level power
capping capability (in-band or
out-of-band)

e M old Cosh(defaultl) e MNodResPart(default) e ElastSched em—MalPowStack

5. Resource
Management

4. Power

1. Objectives
Lv3

Management

2. Constraints

3. Temporal

Granularity

Figure 7: Sophistication Level Coverage by Sophisticated Use Cases
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Figure 7 illustrates the sophistication levels covered by the above sophisticated use cases.
As the first three use cases are orthogonal to power management, they all can be potentially
combined with the PowerStack use cases, and thus can potentially cover a larger area. The
MalPowStack is the most ambitious use case, reaching the level 3 in all aspects, as it
dynamically scales resource/power in a hierarchical manner. As such, it requires significant
updates in the current software stack, and thus cross-project collaborations are inevitable.

4.3.5 Use Case Coverage

TABLE 9 summarizes the use cases and classes we defined in this deliverable. Some of
them were aligned with the PowerStack initiative community [1]. Our major contributions here
are (1) describing them in a generalized form while defining the levels of sophistication in
different aspects shown in TABLE 2, and (2) extending the use cases to reflect modern
sophisticated resource/power management techniques, including ensemble runs,
co-scheduling, and elastic/malleable resource management.

TABLE 9: Summary of classes and use cases

Basic Basic (WP3), Basic+ (WP2), Basic++ (pap [10])
Standard SysThru (WP3), SysEne (WP2), AppPerf (WP2/WP3), AppEtS (WP3)
Advanced SysThru&AppAtS (WP3), NodPowShft (WP3), SchedOpt (WP2/WP3),

PowAwrEns (WP2/WP3)

Sophisticated MoldCosh (WP2), NodResPart (WP2), ElastSched (WP2),
MalPowStack (pap [9])

Most of them were included in the software integration scenarios in WP3 or sophistication
implementations explored in WP2. Several use cases were not covered by these work
packages but were presented in our scientific papers. For instance, an ML-based anomaly
detection mechanism was proposed in [10], and the convergence of malleable MPI job
scheduling and the PowerStack path was explored via our simulation in [9]. In our future
work, we could extend these use cases also for the carbon reduction purpose as we
presented in [11]. The carbon emission of an HPC system is denoted as the time integral of
total system power consumption multiplied by carbon intensity (i.e. the ratio of power supply
generated by burning fossil fuels) of the power grid where the supercomputing site is located.
It is known that the carbon intensity varies across time depending on the availability of
renewable power supplies. Therefore, automatically scaling the total system power bound in
accordance with the carbon intensity variability is a promising solution to limit the carbon
emission of the site, which could operate at the top of the power management hierarchy. We
will share our extensions with the PowerStack community as a branch of their activities and
will continue the extensions in the community as well.
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5. Architecture and Interface Descriptions

In this section, we introduce the details of our architectural entities and their high-level
interfaces to realize the use cases described in the last section. Clarifying the functionalities
and interfaces for each architectural module is pivotal for software tool assessments and
integrations as well as the standardization procedure. In the last deliverable (D1.2), we
defined our architecture with a necessary and sufficient set of interface functions to realize
the PowerStack use cases, in particular from a top-down point of view. They were revisited in
WP3 based on a bottom-up approach defining the list of interfaces needed by the tools.
Then, the core functions used in our major use cases and integration scenarios were
implemented in the REGALE common library to enable extensible, scalable, and secure
power management. Throughout this procedure, the naming, selections, definitions of these
functions have been changed from the last edition. Also, note several functions introduced
here are not yet available in the REGALE common library, as they are less fundamental,
however including them eventually in the future version of our REGALE library would be a
great addition.

5.1 REGALE Final Architecture

Figure 8 depicts the REGALE final architecture and mapping of our high-level API functions
on it. As shown in the figure, the architecture and its API functions have been significantly
modified since the last edition. This is due to our decision to have a common library layer to
bridge software modules for extensibility, security, and scalability. The REGALE common
library is implemented using a DDS middleware that works in a publisher-subscriber pattern.
By doing so, a new software module can easily join in our power and resource management
loop by simply registering it as a publisher or subscriber of a certain API function. As for
security or scalability, see our descriptions in Section 7.1 or D1.4.
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In the current version of REGALE common library, we target the combination of the system
power manager, node manager, and monitoring tool. Their core interface functions are
already available there. In our future extensions, we consider putting more software tools in
this power/resource management loop, such as the job manager, workflow engine, and
RJMS, in order to realize all the standard and advanced use cases. Although our software
tools were directly integrated with each other in some integration scenarios, our ambition
here is realizing all the necessary integrations and interactions via the REGALE common
library layer. Therefore, we also describe API functions on each component, which would be
potentially exposed to the others via the REGALE common library layer. In addition, we also
consider several functions to select a power management policy, which would be exposed to
the site administrator and would be useful when using our software toolchain.

5.2 REGALE API Descriptions

This section lists our API functions per software components. The core functions that were
already implemented in the REGALE common library are shown with a bold font. Here, we
cover functions for the Basic/Standard/Advanced use cases to focus on power management.
The Sophisticated resource management use cases require more complexities inside of
software modules and additional interface functions are also needed to enable flexible
resource management for co-scheduling, elasticity, or malleability.

[System Power Manager]

The following functions with the bold font are core functions used from the Basic to the
Advanced use cases. As these API functions are essential to realize our use cases, they are
actually implemented and available in the REGALE common library.

regale_state_t regale_spm_.init()
# Initialization of the system power manager
OUT regale_state_t out # Error flag

regale_state_t regale_spm_get_info(regale_info_t *info);
# Get the SPM status/setup information
OUT regale_info_t *info # Obtained status/setup of SPM
OUT regale_state_t out # Error flag

regale_state_t regale_spm_get_power(regale_power_status_t *power)
# Read current system power consumption
OUT regale_power_status_t *power # System power consumption output
OUT regale_state_t out # Error flag

regale_state_t regale_spm_set_powercap(uint32_t power, bool wait_for_ack)
# Set system-wide power capping

IN uint32_t power # Total system power cap
IN bool wait_for_ack # Flag to tell if the capping is complete or not
OUT regale_state t out # Error flag

regale_state_t regale_spm_finalize()
# Finalization of the system power manager
OUT regale_state_t out # Error flag
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The following functions are for some of our use cases that control temperature (e.g., Basic+).
So far, the temperature management functions are not supported in the REGALE common
library as the temperature capping does not require a sophisticated approach but is typically
set statically and uniformly. However, it is extensible to support them as well.

regale_state tregale_spm_get temp(regale _temp status_t *temp)
# Read current system temperature
OUT regale_power_status_t *temp # System-wide temperature output
OUT regale_state_t out # Error flag

regale_state tregale_spm_set_tempcap(uint32_t temp, bool wait_for_ack)
# Set system-wide temperature capping

IN uint32_t temp # System-wide temperature cap
IN bool wait_for_ack # Flag to tell if the capping is complete or not
OUT regale_state t out # Error flag

[Node Manager]

The following API functions are important to manage nodes and are already exposed via the
REGALE common library.

regale_state_t regale_nm_init()
# Initialization of the node manager
OUT regale_state t out # Error flag

regale_state_t regale_nm_get_info(regale_info_t *info)
# Get the node manager status/setup information
OUT regale_info_t *info # Obtained status/setup of node manager
OUT regale_state t out # Error flag

regale_state_t regale_nm_get_power(uint32_t *power)
# Read current node power consumption
OUT uint32_t *power # Node power consumption output
OUT regale_state t out # Error flag

regale_state_t regale_nm_set_powercap(uint32_t power)
# Set node-level power capping
IN uint32_t power # Node power cap
OUT regale_state t out # Error flag

regale_state_t regale_nm_get_power_all(uint32_t *power, int32_t expected_nodes)
# Read current node power consumption

OUT uint32_t *power # Output of node power consumptions
IN uint32_t expected_nodes # Nodes selector
OUT regale_state_t out # Error flag

regale_state_t regale_nm_get_powercap_server(uint32_t *power)
# Read the current node powercap
OUT uint32_t *power # Node powercap output
OUT regale_state_t out # Error flag
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regale_state_t regale_nm_get_maxfreq_server(uint32_t *max_freq)
# Read the current maximum frequency
OUT uint32_t *max_freq # Maximum frequency output
OUT regale_state t out # Error flag

regale_state_t regale_nm_get_minfreq_server(uint32_t *min_freq)
# Read the current minimum frequency
OUT uint32_t *min_freq # Minimum frequency output
OUT regale_state t out # Error flag

regale_state_t regale_nm_get_curfreq_server(uint32_t *cur_freq)
# Read the current clock frequency
OUT uint32_t *cur_freq # Current frequency output
OUT regale_state t out # Error flag

regale_state_t regale_nm_finalize()
# Finalization of the node manager
OUT regale_state_t out # Error flag

The following are not yet exposed via the REGALE common library, but doing so would be
beneficial to support more use cases. Here, we assume component-level power control
functions are not exposed to the REGALE common library layer as the intra-node power
shifting is managed within the node manager.

regale_state tregale_nm_get temp_server(uint32_t *temp)
# Read the current temperature
OUT uint32_t *temp # Temperature output
OUT regale_state_t out # Error flag

regale_state tregale_nm_set temp_server(uint32_t temp)
# Set the temperature capping
IN uint32_t temp # Temperature cap
OUT regale_state_t out # Error flag

regale_state tregale_nm_set maxfreq_server(uint32_t max_freq)
# Set the current node powercap
IN uint32_t max_freq # Set up max frequency
OUT regale_state_t out # Error flag

regale_state tregale_nm_set_minfreq_server(uint32_t min_freq)
# Read the current node powercap
IN uint32_t min_freq # Set up min frequency
OUT regale_state_t out # Error flag

regale_state tregale_nm_set freq_server(uint32_t freq)
# Read the current node powercap
IN uint32_t freq # Set up frequency
OUT regale_state t out # Error flag
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[Monitor]

The following API functions already exist in the REGALE common library.

regale_state_t regale_monitor_init()
# Initialization of the monitor
OUT regale_state t out # Error flag

regale_state_t regale_report_node_telemetry(regale_node_id_t *node,
regale_node_data_t *data)
# Get the node-level telemetry report

IN regale_node_id_t *node # Node ID input
OUT regale_node_data_t *data # Node-level telemetry data output
OUT regale_state_t out # Error flag

regale_state_t regale_report_job_telemetry(regale_job_id_t *job, regale_job_data_t
*data);
# Get the job-level telemetry report

IN regale_job_id_t *node # Job ID input
OUT regale_job_data_t *data # Job-level telemetry data output
OUT regale_state_t out # Error flag

regale_state_t regale_report_cluster_telemetry(regale_cluster_id_t *cluster,
regale_cluster_data_t *data)
# Get the cluster-level telemetry report

IN regale_cluster_id_t *cluster # Cluster ID input
OUT regale_cluster_data_t *data  # Cluster-level telemetry data output
OUT regale_state t out # Error flag

regale_state_t regale_monitor_finalize()
# Finalization of the monitor
OUT regale_state_t out # Error flag

The above telemetry functions are used to obtain the statistical information of job, node, or
cluster behaviors. Here, we can consider several options with respect to what exact data we
send. For instance, the monitoring module could also send characterization or estimation
data generated by the estimator inside of it. By doing so, we could share a common model
among different components, instead of having their own different models distributed across
different modules.

[RJMS]

The following functions are not yet available via the REGALE common library, and so far one
needs to directly communicate with the RUIMS software tool. However, these functions are
important to realize advanced use cases when the RJMS is involved in the power
management loop.

regale_state tregale_rjms_init()
# Initialization of the RIMS
OUT regale_state t out # Error flag
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regale_state tregale rims_get info(regale info_t *info)
# Get the RUIMS status information (e.g., queueing status, job=>node mappings)
OUT regale_info_t *info # Obtained status/setup of RIMS
OUT regale_state t out # Error flag

regale_state tregale rjims_submit_job(regale job t *job)

# Submit a job
IN regale_job_t *job # Pointer to the job submission info
OUT regale_state t out # Error flag

regale_state tregale rims_Kkill_job(regale job id tjob)

# Kill a job
IN regale_job_id_t job # Job ID to kill
OUT regale_state t out # Error flag

regale_state tregale rims_finalize()
# Finalization of the RUIMS
OUT regale_state_t out # Error flag

[Workflow Engine]

The following functions are not yet available via the REGALE common library, but relevant
functions are needed for interactions between the Workflow Engine and the PowerStack to
converge these paths.

regale_state tregale_we_init()
# Initialization of the workflow engine
OUT regale_state t out # Error flag

regale_state tregale we get info(regale_info t *info)
# Get the workflow information
OUT regale_info_t *info # Workflow information
OUT regale_state t out # Error flag

regale_state tregale we get power(uint32_t *power)
#Read out workflow-level power consumption
OUT uint32_t *power # Workflow power consumption
OUT regale_state t out # Error flag

regale_state tregale we_ set powercap(uint32_t power)
# Set workflow-level power capping
IN uint32_t power # Workflow power cap
OUT regale_state t out # Error flag

regale state tregale_we_finalize()

# Finalization of the workflow engine
OUT regale_state_t out # Error flag
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[Job Manager]

The following would be required to set up job level power management. The job manager tool
then calls the REGALE APIs connected to the Node Manager for such as power budget
distributions across nodes.

regale_state_t regale_jm_init()
# Initialization of the job manager
OUT regale_state t out # Error flag

regale_state tregale jm_get info(regale info t *info)
# Get the job information
OUT regale_info_t *info # Job info
OUT regale_state t out # Error flag

regale_state tregale jm_get power(uint32_t *power)
#Read out job-level power consumption
OUT uint32_t *power # Job power consumption
OUT regale_state t out # Error flag

regale_state tregale jm_set powercap(uint32_t power)
# Set job-level power capping
IN uint32_t power # Job power cap
OUT regale_state t out # Error flag

regale_state tregale jm_finalize()
# Finalization of the job manager
OUT regale_state_t out # Error flag

[Admin Interface]

The following interface functions are meant to be offered to the site administrator to select or
configure a power/resource management policy for improving manageability.

regale_state tregale_init_policy()
# Initialization of the power/resource management policy setup
OUT regale_state t out # Error report

regale_state t regale_set_policy(regale policy t policy)
# Set a policy as an instance of a use case
IN regale_policy_t policy # Policy to set
OUT regale_state t out # Error report

regale_state tregale_get policy(regale policy_t *policy)
# Get the current policy
OUT regale_policy_t policy # Current policy
OUT regale_state t out # Error report

regale_state t regale_get policylist(regale info_t *policylist)
# List of power/resource management policies registered on this system
OUT regale_info_t *policylist # Policy list output
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OUT regale_state_t out # Error report

regale_state_t regale_add_policy(regale_info_t *policyconfig)
# A new power management policy to install on this system
IN regale_info_t *policyconfig # Descriptor of policy configuration file
OUT regale_state_t out # Error report

regale_state tregale_remove_policy(regale policy t policy)
# Remove a policy from the list
IN regale_policy_t policy # Policy to remove
OUT regale_state_t out # Error report

regale_state_t regale_finalize_policy()
# Finalization of the general policy setup
OUT regale_state t out # Error report

These functions are to be exposed to the site administrator so as to designate a power
management policy (regale policy t policy) from a set of policies (regale_info_t *policylist)
derived from the use cases. Once the policy setup is changed, the associated configuration
or plugin is selected at each component (e.g., SPM, node manager, RIMS, etc.). The output
variable is the acknowledgement or error type to report if the policy setup completes properly
or not. These functions are not yet supported in the REGALE common library, but they will be
promising additions in order to orchestrate the module setups to enable each use case.

The site administrator should be able to add/remove/modify a policy freely. To this end, the
following interface should also be provided. The function regale_gen_add_policy() is used to
install a new policy with the policy setup (e.g. json, xml, etc.).

5.3 Case Studies

In this section, we make cases for various representative use cases to understand how our
architectural modules interact with each other using the APIs mentioned above so as to
enable the use cases. Note, in case these functions are not yet available in the REGALE
common library, the layer is simply ignored and a relevant tool specific interface is used. We
are planning to move them to the

[Basic]

Once the total system power cap is designated by the system administrator, the power cap
setup request is sent to the REGALE common library. The system power manager reacts to
the request, naively divides the budget evenly to all nodes on the system/cluster, and then it
sends out the node power cap requests. Then, the node manager on each node reacts to it,
sets up the power capping to the node, and returns the acknowledgement. This simple
procedure is illustrated in Eigure 9. In the case of Basic+, we also apply temperature capping
in the same way using different functions.
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[SysThru/SysEne]

In SysThru/SysEne, system-level throughput/energy optimizations are involved, which are
usually based on statistical data to characterize the running jobs. Therefore, before sending
out the power capping requests to the target nodes, the system power manager accesses the
job/node associated monitoring data to help with optimizing the power capping decisions.
Figure 10 illustrates this additional process. If it utilizes job telemetries, it needs to know the
jobs to nodes mapping, which can be obtained from the RJMS using such as
regale_rjms_get_info(). The trigger of power capping update can be a job launch, and thus
the RUIMS should be able to send the system power manager to update the power capping
setup using such as regale_spm_set_powercap().
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Figure 10: Component interactions in SysThru/SysEne
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[SysThru&AppEtS]

In this use case, application-level energy optimizations are also involved in addition to the
system-level throughput optimization mentioned above. In our integration, the system power
manager decides the power capping, while the job manager optimizes the clock frequency
while keeping the given job power limit, or sum of the node power limits where the job is
mapped. For both decisions, the associated job telemetry is used. Eigure 11 depicts how the

entire procedure goes.

Cluster0 Cluster1
RIMS Workflow Job Sgstem Node Node
o ower
Engine Manager Manager Manager 1 Manager
- 3.
regale_spm_s tl regale_nm_set ?égale .
_powercap() _nm_
—powercap() set_freq()
4.
regale_jm_set
powercap()
REGALE Common Library Layer
2
____________ b ;

Figure 12 shows an alternative approach to realize the use case. In this approach, the job
manager decides both the node power capping and clock frequency setup. As users can be

regale_report_job_
telemetry()

regale_report_job_te
lemetry() /
regale_report_node_
telemetry()

Monitor

Figure 11: Component interactions in SysThru&AppEtS

in the decision loop, the power capping control privilege needs to be managed carefully.

Cluster0 Cluster1
System Node Node
RIMS Workflow Job Power Manager Manager
Engine Manager Manager I
. 5.
regale_spm_set regale_nm_set_
_powercap|) powercap()
regale_nm_set_
> freq()
regale_jm_set |
powercap()
REGALE Common Library Layer
: Admin Interface ) 4. 2.
L e regale_report_job_ regale_report_job_te
telemetry() lemetry() /
‘ Monitor

Figure 12: A Variant Implementation for SysThru&AppEtS
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[SchedOpt]

In this use case, the RIMS is additionally included in the power management optimization
loop. It interacts with the system power manager to obtain the remaining system power
budget, i.e., system-level power boundary minus current system power usage. Then this
information is used for optimizing scheduling decision making, such as energy-aware
backfilling using moldable jobs. This decision should be also made based on the associated
job telemetry data. Further, we can consider using the RIMS information (e.g., job queueing
state) in the system power manager side as well when determining the power capping setups
to nodes or jobs. Figure 13 summarizes the additions in this use case.

Cluster0 Cluster1
I “lllll[ - 1 . .
4. Job launch System Node Node
RIMS Workflow Job Power Manager Manager
Engine Manager Manager 1

2 1
) . regale_spm_se
regale_spm_get_info() 9 pngrc_ap(

regale_spm_get_power()

REGALE Common Library Layer

I 3

""""""""""""" i regale_report_job_
i telemetry()

________________________

‘ Monitor

Figure 13: Additional Component Interactions for SchedOpt

[PowAwrEns]

Finally, we introduce a convergence use case between an HPC workflow management and
the HPC PowerStack. Here, we assume ensemble runs of scientific applications using such
as Melissa, however the procedure here in general works if a workflow engine sets up both
the concurrency of jobs and per-job power boundary under a given workflow power cap.
Figure 14 illustrates the overall procedure except for the node-/job-level power budgeting.
The system power manager first sets the workflow power boundary. Then, within the
boundary workflow engine tries to co-optimize per-job power budgeting as well as how many
jobs can concurrently run by submitting/killing jobs within the workflow. The workflow engine
tools are managed also by users, and thus the power control privilege needs to be managed
carefully. This aspect will be discussed in Section 7.
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Figure 14: Additional Component Interactions for PowAwrEns
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6. Integration Overview

In this section, we first introduce an assessment of our software tools we made to realize the
PowerStack path, i.e., mapping them to the architectural components specified in the last
section and discussing the missing pieces in order to support these use cases. We then
move on to integration plans conducted based on this assessment. We then finally introduce
the summary of our integration in WP3 to present how the use cases were converted into the
integrations.

6.1 Tool Assessment for PowerStack

TABLE 10: Candidates for System Manager / Monitor and Functionality Support
| = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need
Moderate/Major Updates, Blank = No (or Almost No) Support

System Manager Monitor
Sensors Estimator
RIMS | SPM | APILib pg | Signa | APILI
In band Out of Anomal Pow/perf ture b
band y P
SLURM

JOAR / X / / X / /
DCDB / / / X / / / /
Examon / / / X / / / /
BEO / X X /
EAR X / / X / /

TABLE 10 lists the relevant tools for System Manager and Monitoring to realize the
PowerStack use cases. SLURM and OAR are RJMS tools, and they support key
functionalities including job scheduling and token management. They also support other
functionalities with respect to power management (SPM) and statistics recording
(monitoring), however some other tools offer more functionalities. To implement the
SchedOpt use case, a new scheduling plugin needs to be developed. As for the SPM, EAR
(EARGM) is one of the best options because the interaction with SLURM to obtain job
information is already supported in the tool via SLURM plugins/APls. As for the statistics
analysis functions, several monitoring tools (e.g., DCDB and Examon) already support them,
such as ML-based modelings, and they are extensible and changeable by plugins. These
analytics functions can be extensible and will be useful for a variety of use cases.

As for the monitoring aspect, DCDB and Examon can measure both in-band and out-of-band
sensors periodically (from 0.1Hz up to 100Hz of frequency depending on what we measure)
and are extensible to support any sensors by plugins, including such as those in cooling
facilities. These collected information is recorded with the associated job information on their
database —these tools are also able to interact with SLURM to obtain job information. The
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measurement function is accessible by other tools, such as those Node Manager tools, by
using their APIs. For the above strengths, DCDB and Examon are selected for the
mainstream option of the Monitor module, however the others also can work as the Monitor in
several implementations depending on the use cases.

TABLE 11: Candidates for Node/Job Manager and Current Functionality Support
| = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need
Moderate/Major Updates, Blank = No (or Almost No) Support

Node Manager Job Manager HW access
ﬁg’:i?r 2;;:6;?1; APILb | Profiing | PO | APILIb | In-bang | OUtorban
SLURM X / / /
PULP ctr / / X
BEO X X / / X
BDPO / X / /
EAR / / / X / /
Countdown X / /

Next, TABLE 11 summarizes the candidates for Node or Job Managers, and the current
support for their key functionalities as well as their in-band or out-of-band hardware
knob/sensor accessibilities. The SLURM node daemon works together with the SLURM
system controller, and there are a variety of API functions to access their information.
Although the default power management support in the node daemon is limited (e.g., no
node-level power shifting support), the tool is useful as an interface to interact with the
system manager. PULP controller is a low-level power controller, works transparently to the
application, user, and system software, currently targeting EPI processors [12]. The tool can
access both in-band and out-of-band sensors and automatically optimizes power
management knobs using model predictive control algorithms under thermal and power
limits. BEO is an out-of-band power monitoring and controlling tool. The supported hardware
is a set of AMD/Intel machines in the Atos catalog because the tool is developed in Atos, with
a particular focus on their products, and a plugin is needed for other systems. It monitors
power consumption using out-of-band sensors and can set the power cap using the in-band
RAPL interface. The tool is going to be improved by implementing the following: setting the
node power/termal capping via Slurm (Basic/Basic+); and sophisticated power control and
anomaly detection mechanisms. BDPO is a job-oriented profile-based power-performance
optimization tool, which optimizes clock frequency to trade-off performance and energy or to
minimize energy (AppEtS use case supported), and can be extensible to cover other
job-oriented use cases. EAR is another job-oriented power-performance monitoring tool. It
transparently optimizes the power management knobs on CPUs and GPUs using the profiles
of previous runs that are automatically detected. The power management policies are
implemented as plugins. The tool currently supports the minimizing energy to solution
(AppEtS) use case, and is extensible to cover other use cases such as AppPerf or
NodPowShft. COUNTDOWN is another tool that enables job-level power/performance
optimizations based on a different focus than others. It tries to minimize the power
consumption while waiting for the completion of an MPI communication, by scaling down the
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clock frequency or going into one of the CPU sleep states (C-state). It targets Intel CPUs, but
is going to support other hardware including GPUs. The tool will reinforce the AppEtS use
case and will open up new research opportunities and use cases, which are going to be
covered in the future deliverables.

6.2 Conversion into Integrations

Based on the above tool integration assessment, we determined several integration
scenarios (or instances). Figure 15 depicts the general concept with respect to how we
convert these use cases into the integration scenarios. Each integration scenario supports its
own set of use cases depending on what functionalities their tools support. In general, the
site administrator can pick one use case suitable for the objective, which is in practice
realized by selecting the associated configuration and plugin. The implementation/integration
is conducted in the WP3, and the more detailed descriptions are provided in the deliverable
D3.3. The coverage of use cases by the WP3 integrations and the WP2 sophistications are
summarized in TABLE 9 (see Section 4.3.5). In this section, we introduce what tools are
involved in and which use cases are relevant for each integration.

Defining Use Cases & Architecture to Realize them (WP1)
f i
! —_— o — o —
L - -
s , Iy x. # 5
ol Basic ) | SysThru | """ | SchedOpt |
T A . oy . A
H o — o — o o 1
i T ——r——"_5W Tool —— ! . ~
Srm——azco- oo 3 ' More Use Cases
e ———— | Inlegration arcn

e — 7 |:: {WP2)
: Tmsessoooo |
i B T — T T T !
i d f e T, o T
| Integration (" Integration { Integration
[ | | J \ |
: ‘N\“'-.. I'E" -"'-; .\.'\-\.. B ..-"'; \\“'-.. C _.-"f E
i T —— — — !
1 !

Flugins & Infegrated Tool Sets (WP3)

Figure 15: Mapping of Use Cases into Integrations
Integration Scenario #1: Application-aware system power capping

This integration scenario aims at maximizing total system throughput under a power cap. The
system throughput is maximized thanks to the feedback that is manually provided by
end-users to the RIJMS about the performance behavior of the job or the one that is
automatically computed by the Execution Profile Compute Module (EPCM), which works as a
signature handler. The feedback is then conveyed to the SPM which generates per-job power
limits for each node. In this scenario, the SPM plays the key role in terms of global power
management at the system scale, and in terms of power capping strategies at the job scale.

The relevant use cases and the involved software tools are as follows. As described above,
this scenario is relevant to SysThru, in particular profile-driven proactive power management.
This also covers a more naive Basic use case as it simply distributes the power cap evenly
across nodes.
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Relevant use cases Basic, SysThru

Involved software tools OAR(RJMS), BEO(SPM), ECPM(Sig Handler),
EXAMON/DCDB(Monitor)

To realize this integration scenario, we integrate OAR, BEO, EXAMON/DCDB, and ECPM.
The ECPM is a newly developed external module to enable the signature computation
functionality.

Integration Scenario #2: Application-aware energy optimization under a system power
cap

This integration scenario is complementary to the previous one. As in the previous scenario,
the Job scheduler and the Node manager enforce the power cap. In addition, the Job
manager and the Node manager optimize the power state of the compute resources based
on application demand. The Monitor provides insights to the system administrator on platform
metrics and to the users on job’s efficiency through dashboards.

The relevant use cases and the involved software tools are as follows. This scenario covers
application-level power optimizations (AppThru, AppEtS, SysThu&AppEtS), while following the
power constraint set by the system and node manager.

Relevant use cases AppThru, AppEtS, SysThu&AppEtS

Involved software tools BEO(SPM), EAR/BEO(Node Manager),
EXAMON(Monitor), COUNTDOWN(Job Manager)

To realize this scenario, BEO, EAR, EXAMON, and COUNTDOWN are integrated. In
particular, the COUNTDOWN plays an important role in this scenario by setting the compute
resources into a low power mode while waiting for MPI communications.

Integration Scenario #3: Application-aware power capping with job scheduler support

This integration scenario covers a use case where the RIJMS plays an active role in the
power management. In this scenario, the SPM applies the cluster powercap algorithm to
dynamically setting the node powercap based on application characteristics. The RIMS
receives information from the SPM about the system status in terms of power consumption.
Based on this information, the RIMS can take several actions/decisions: It can (1) influence
the scheduling policy, the order of jobs, and job priorities in order to adapt the scheduling to
the system status, and (2) it can force the System Power Manager to reduce the allocated
power of running nodes in order to guarantee some power for new jobs. The following table
lists the relevant use cases and the involved software tools. In addition to SysThru,
NodPowShift is also applicable to this integration scenario thanks to EAR’s multiple device
support.
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Relevant use cases Basic, SysThru, SchedOpt, NodPowShft

Involved software tools OAR(RJMS), EARGM(SPM), EARD(Node Manager),
Examon(Monitor)

Integration Scenario #4: Application-aware power capping and frequency optimization
with job scheduler support

The integration is an extension of the integration scenario #3 and attempts to further apply
job-level power management. It augments an additional layer in the power management
hierarchy and also applies the frequency optimization under a job/node power budget.

Relevant use cases Basic, SysThru, SchedOpt, NodPowShft, AppThru,
AppEtS, SysThu&AppEtS

Involved software tools OAR(RJMS), EARGM(SPM), EARD(Node Manager),
Examon(Monitor), EARL(Job Manager)

Integration Scenario #5:

The final integration scenario bridges between the PowerStack path and the Melissa path.
The integration aims to realize power monitoring/control as well as concurrency control for
ensemble runs (kill clients if the power budget is overrun). In this integration scenario,
Melissa is integrated with EAR and OAR.

Relevant use cases PowAwrEns

Involved software tools OAR(RIMS), EARGM(SPM), EARD(Node Manager),
Examon(Monitor), Melissa (Workflow Engine)
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7. Security, Privacy, and Reliability Perspectives

Although security, privacy, and reliability aspects are not part of the strategic objectives of the
project, we introduce how these are managed in the REGALE architecture and software
stack due to an increasing demand in the HPC community. We classify our approaches into
(1) privilege control for power management, (2) privilege/privacy management for monitoring,
(3) anomaly detection mechanism and its extension for security, and (4) trustworthy job
execution environments.

7.1 Privilege Control for Power Management

As power budget is a first-class resource on a power-constrained HPC system, the access
privilege to power control functions need to be controlled in a secure way. In our project, this
is realized at multiple different layers. One is at the REGALE common library level, and the
privilege is controlled by registering the publishers and subscribers per API function. This
registration is handled by the privileged site administrator, and software can access these
functions only if they are a publisher/subscriber as long as the underlying DDS middleware is
robust to vulnerability attacks. The other control layer is at the node level, i.e., access
privilege control to the hardware power knobs (or MSR) to permit or deny user-level power
management. This is handled at the Linux kernel level — we create a specific group to which
we permit the hardware power knob access, and users can access the knobs only if they are
included in the group as long as the kernel is trustworthy. Further, the node manager should
have access to out-of-band power control knobs to force power capping with the highest
priority in case of an emergency.

7.2 Privilege/Privacy Management for Monitoring

The collected statistics by the monitoring tools are used as fuels for system analyses and
optimizations. They need to be carefully managed as they could include sensitive information
that must not be shared in public. They need to be correctly classified into public or private
sectors, and the access privilege control and anonymization mechanisms are key features for
monitoring tools. In the REGALE tools, the monitoring system can be viewed as composed
by four main parts: (i) the data bus, (ii) the database, (iii) the visualization web server, and (iv)
the APl and query server. The (i), (ii), (iv) have restricted accesses and are not publicly
available, (iii) is configured by restricted users, but exports pre-deifined dashboards to
general users. To support the research community, an anonymization procedure has been
defined with the site administrators to anonymize and/or remove privacy critical collected
data when datasets are extracted from the internal monitoring database to be released [13].

7.3 Anomaly Detection Mechanism and Its Extension for Security

REGALE provides an anomaly detection mechanism (e.g., node failure, temperature
anomaly, etc.) using an ML-based approach with monitored data. More specifically, We
developed GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC systems, a
framework for continuously predicting compute node failures in the supercomputer. The
framework consists of (i) an anomaly prediction model based on graph neural networks
(GNNss) that leverage nodes’ physical layout in the compute room and (ii) the computationally
efficient integration into the Marconi100’s ExaMon holistic monitoring system with Kubeflow,
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an MLOps Kubernetes framework which enables continuous deployment of Al pipelines. We
have developed HazardNet, a framework for predicting thermal hazards. HazardNet utilizes a
complete pipeline of deep learning models to capture the intricate spatial and temporal
dependency between operational parameters of data centers and thermal hazards. Such a
mechanism is extensible also for malware activity detections in HPC centers, which would be
explored in future work.

7.4 Trustworthy Job Execution Environments

Program and data protection/isolation are of necessity for a certain class of modern
workloads such as Al-based big data analytics using privacy sensitive data. These emerging
workloads need to run in a trusted execution environment (or TEE) with a program/data
encryption capability, and recent commercial processors offer hardware-level protection
mechanisms such as AMD SEV, Intel SGX, and Intel TDX. While these technologies can
induce a considerable performance overhead, and thus are not always preferable for
traditional scientific workloads, they are required for emerging security/privacy sensitive
workloads. As the RYAX path targets also such a class of workloads, it can offer the use of
hardware-based TEEs. One option for this is using protected docker images and deploying
them in the virtual cluster region.
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8. Conclusions and Future Directions

In this final deliverable, we provided the final state of REGALE architecture, its requirements
and interfaces, mapping to our prototypes, and security/privacy/reliability management. We
first introduced the architecture and how our software tools are mapped to it. We then
formulated all the use cases the project targeted, encompassing both power and workflow
engines while stating the requirements for each software component. Next, we described the
high-level interfaces between components to represent how they interact with each other to
realize the mentioned use cases. We then introduced prototypes integrated in WP2/3 and
presented the coverages of use cases as well as the SOs/KPIs. We finally introduced the
security/privacy/reliability aspects considered in the architecture even though they were not
included in our SOs/KPIs we set at the beginning due to an increasing demand for them.

The architecture is considered an European version of the PowerStack standard [1]. Before
the start of the project, the PowerStack community defined a strawman architecture. We
followed their activities, inherited the standard, pushed it forward, and used it as a milestone
for our prototyping and software integrations. We are sharing not only our updates in the
architecture but also our lessons learnt throughout the whole procedure with the community
in order to drive the standardization activities.

There are a variety of opportunities to apply/extend the REGALE approach toward power-,
energy-, and carbon-efficient supercomputing in the post-exascale era. Although our scope
was limited to power management on compute nodes, which was because they were known
as one of the most power-hungry components in almost all the supercomputers, we can
extend the target, with comprehensively covering also other components such as cooling
systems, 1/O nodes, network infrastructures, etc. Shifting power budgets between compute
nodes and them depending on the system/workload status would be a promising option to
improve the efficiency one step further. Although we targeted uniform compute
clusters/nodes in our prototyping, several upcoming exascale systems (e.g. Jupiter [5]) will
be based on modular architectures, consisting of multiple different types of compute clusters.
Our approach is extensible to such systems by supporting power budgeting across them
while providing a reasonable algorithm/methodology/implementation to shift power in our
future work. In this project, we did not explore the optimization of system-level power
capping, but we assumed this was set accordingly by the system administrator. However,
scaling the system power budget in an automatic way in accordance with the carbon
efficiency of the power grid would be a promising solution to minimize the operational carbon
footprint of a supercomputer, given that carbon reduction would be pivotal in future
supercomputing [9]. Nevertheless, the contributions presented here in the project still apply
and form the necessary foundation.
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