
H2020-JTI-EuroHPC-2019-1

REGALE: An open architecture to equip next generation HPC

applications with exascale capabilities

Grant Agreement Number: 956560

D1.2

REGALE Intermediate Architecture

Final

Version: 2.0

Author(s): Eishi Arima (TUM), Mohsen Seyedkazemi Ardebili (UNIBO), Georgios
Goumas (ICCS), Varvara Asouti (NTUA), Ioannis Kalogeris (NTUA), Ioannis
Ledakis (UBI), Ioannis Plakas (UBI), Antonis Koukourikos (SCIO), Bruno
Raffin (UGA), Alejandro Ribes (EDF)

Contributor(s): Listed in Acknowledgement section

Date: 05.05.2023



D1.2 REGALE Intermediate Architecture

Project and Deliverable Information Sheet

REGALE
Project

Project Ref.№: 956560

Project Title: REGALE

Project Web Site: https://regale-project.eu

Deliverable ID: D1.2

Deliverable Nature: Report

Dissemination Level: PU *

Contractual Date of Delivery:

30 / 09 / 2022

Actual Date of Delivery:

05 / 05 / 2023

EC Project Officer: Evangelos Floros

* - The dissemination levels are indicated as follows: PU = Public, fully open, e.g. web; CO =

Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified,

information as referred to in Commission Decision 2001/844/EC.

Document Control Sheet

Document

Title: REGALE Requirements, Initial Architecture, and Evaluation Plan

ID: D1.2

Version: 2.0 Status: Final

Available at: https://regale-project.eu

Software Tool: Google Docs

File(s): REGALE_D1.2_Architecture_ver2.0.pdf

Authorship

Written by:

Eishi Arima (TUM), Mohsen Seyedkazemi
Ardebili (UNIBO), Georgios Goumas (ICCS),
Varvara Asouti (NTUA), Ioannis Kalogeris
(NTUA), Ioannis Ledakis (UBI), Ioannis
Plakas (UBI), Antonis Koukourikos (SCIO),
Bruno Raffin (UGA), Alejandro Ribes (EDF)

Contributors: Listed in Acknowledgement section

Reviewed by:
Georgios Goumas (ICCS), Andrea Bartolini
(UNIBO), Martin Schulz (TUM)

Approved by: Georgios Goumas (ICCS)

REGALE - 956560 2 05.05.2023

https://regale-project.eu
https://regale-project.eu


D1.2 REGALE Intermediate Architecture

Document Status Sheet

Version Date Status Comments

0.1 21.09.2022 Draft Initial version

0.2 28.09.2022 Draft
Internal review
completed

0.3 04.10.2022 Semi Final Major updates

1.0 06.10.2022 Final Final fixes

1.1 1/3/2023
Deliverable
reopened

Structure of evaluation
plan

1.2 15/3 Draft Initial evaluation plan

1.3 31/3/2023 Draft Evaluation plan detailed

1.4 21/4/2024 Draft Final evaluation plan

1.9 28/4/2023 Semi-Final Minor edits

2.0 05/05/2023 Final Final edits

Document Keywords

Keywords:
REGALE, HPC, Exascale, Software Architecture, Software Integration,
Power Stack, Workflow Engines

Copyright notice:

© 2022 REGALE Consortium Partners. All rights reserved. This document is a project
document of the REGALE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the REGALE partners, except as
mandated by the European Commission contract 956560 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as owned by the respective holders.

REGALE - 956560 3 05.05.2023



D1.2 REGALE Intermediate Architecture

Executive Summary
This deliverable document reports the current status of WP1 (work package on requirements,
architecture and evaluation) in the REGALE project, i.e., the requirement specifications (Task
1.1), the intermediate software architecture (Task 1.3). The ultimate goal of REGALE is to
pave the way of next generation HPC applications to exascale systems, and to accomplish
this we define an open architecture (WP1), build a prototype system (WP3) and incorporate
in this system appropriate sophistication (WP2) in order to equip supercomputing systems
with the mechanisms and policies for effective resource utilization and execution of complex
applications (WP4). We are conducting these studies in a cooperative manner, i.e., the
architecture and the prototype are co-designed/conceptualized considering both
state-of-the-art and next generation HPC applications, maximizing in this way its applicability.
As a first step, this document describes the architecture requirements for a variety of
PowerStack use cases (Section 4) and the intermediate status of the software architecture
for PowerStack path (Section 5), which is used as a blueprint for the other work packages,
e.g., the software prototyping in WP3 (Section 6). Then, this document concludes with next
steps towards updating the open architecture based on the feedback from the other work
packages as well as the integration of the different paths in WP1. Finally, the deliverable also
included an evaluation plan with a focus on the project’s quantifiable Strategic Objectives
(Section 7).

REGALE - 956560 4 05.05.2023



D1.2 REGALE Intermediate Architecture

Acknowledgement
Here, we declare the contributors to this document and how they exactly contributed as well.
As for the authorship, here are the exact roles/assignments:

● Entire document organization/format: Georgios Goumas (ICCS), Eishi Arima
(TUM)

● Front matter, Section1 to Section3: Georgios Goumas (ICCS), Eishi Arima (TUM)
● Section4 (Use Cases and Requirements): Eishi Arima (TUM), Mohsen

Seyedkazemi Ardebili (UNIBO)
● Section5 (PowerStack Path): Eishi Arima (TUM)
● Section6 (Tool Assessment and Summary of Integration): Eishi Arima (TUM)
● Section 7 (Evaluation Plan): Georgios Goumas (ICCS), Varvara Asouti (NTUA),

Ioannis Kalogeris (NTUA), Ioannis Ledakis (UBI), Ioannis Plakas (UBI), Antonis

Koukourikos (SCIO), Bruno Raffin (UGA), Alejandro Ribes (EDF)
● Section8 (Conclusions and Future Directions): Eishi Arima (TUM), Georgios

Goumas (ICCS)
● Review Committee: Georgios Goumas (ICCS), Andrea Bartolini (UNIBO), Martin

Schulz (TUM)

The following individuals contributed to defining the high-level interfaces by providing the
information with respect to the APIs, CLIs, etc. used in their tools (alphabetized by last
name):

Mohsen Seyedkazemi Ardebili (UNIBO), Julita Corbalan (BSC), Julien Forot (ATOS),
Abdelhafid Mazouz (ATOS), Michael Ott (BADW-LRZ), Millian Poquet (UGA), Federico
Tesser (CINECA)

The following individuals joined our regular meetings for WP1/WP3 at least once, in order to
design Regale architecture and clarify the requirements (alphabetized by last name):

Mohsen Seyedkazemi Ardebili (UNIBO), Eishi Arima (TUM, Lead), Varvara Asouti (NTUA),
Andrea Bartolini (UNIBO), Daniele Cesarini (CINECA), Christos Charisis (SCIO), Julita
Corbalán (BSC), Fanny Dufossé (UGA), Pierre-François Dutot (UGA), Kontoleontos Evgenia
(ANDRITZ), Julien Forot (ATOS), Yiannis Georgiou (RYAX), Georgios Goumas (ICCS, Lead),
Daniele Gregori (E4), Klaus Hopfner (ANDRITZ), Konstantinos Ioakimidis (ANDRITZ),
Ioannis Kalogeris (NTUA), Antonis Koukourikos (SCIO), Giannis Ledakis (UBITECH),
Matthias Maiterth (TUM), Abdelhafid Mazouz (ATOS), Hafid Mazouz (ATOS), Martin Molan
(UNIBO), Panagiotis Mpakos (ICCS), Alessio Netti (BADW-LRZ), Michael Ott (BADW-LRZ),
Nikela Papadopoulou (ICCS), Ioannis Plakas (UBITECH), Millian Poquet (UGA), Bruno Raffin
(UGA), Alejandro Ribes (EDF), Olivier Richard (UGA), Martin Schulz (TUM), Mathieu Stoffel
(ATOS), Nikolaos Triantafyllis (ICCS), Carsten Trinitis (TUM), Xenofon Trompoukis (NTUA),
Marianna Tzortzi (ICCS), Pedro Velho(RYAX), Josef Weidendorfer (BADW-LRZ)

Last but not least, we’d like to express our gratitude to the PowerStack initiative community
[1], in particular, Siddhartha Jana (Intel) and Torsten Wilde (HPE) for sharing their insights on
the power stack use cases as well as for discussing possible collaboration opportunities.

REGALE - 956560 5 05.05.2023



D1.2 REGALE Intermediate Architecture

Table of Contents
Executive Summary 4
Acknowledgement 5
Table of Contents 6
1. Introduction 7
2. Project Strategic Objectives 9
3. Intermediate Architecture and Software Tools 11
4. PowerStack Use Cases and Requirements 15

4.1 Our Current Scope and Hardware Requirements 15
4.2 Use Case / Requirements Description Format 17
4.3 Requirement Specifications per Use Case 19

4.3.1 Basic Use Cases 21
4.3.2 Advanced Use Cases 23
4.3.3 More Advanced Use Cases 26
4.3.4 Discussions 28

5. Architecture and Interface Descriptions 29
5.1. Interface Functions for Basic Use Cases 29
5.2. Interface Functions for Advanced Use Cases 37
5.3. Interfaces and Use Cases 41
5.4. Discussions 42

6. PowerStack Integration 44
6.1 Tool Assessment for PowerStack 44
6.2 Summary of current integration status 46

7. Evaluation plan 49
7.1 REGALE Strategic objectives and KPIs 49
7.2 Evaluation targets 50

7.2.1 REGALE prototypes 50
7.2.2 REGALE pilots 51

Pilot 1 51
Pilot 2 52
Pilot 3 53
Pilot 4 54
Pilot 5 55

7.2.3 REGALE sophistication 56
7.3 Available platforms and timeline 56
7.4 Evaluation of qualitative objectives 57

8. Conclusions and Future Directions 58
References 60

REGALE - 956560 6 05.05.2023



D1.2 REGALE Intermediate Architecture

1. Introduction
An exascale supercomputer will not be “yet another big machine”. With a cost of hundreds of
million euros, power consumption in the order of tens of megawatts and a lifetime that
reaches a decade at most, judicious management of those resources is of utmost
importance. Turning our attention to the critical aspect of power consumption, the current
leader in the TOP500 list as of Jun. 2022 [2], has an exascale computational capacity and a
power consumption that exceeds 20MW. Even with the highest technological advancements,
a post-exascale machine is expected to well exceed the 20-30MW threshold that is the
current upper bound of power consumption for exascale computing, and could be even more
than 30MW. A machine of this size will not be able to operate at full power consumption, and
energy consumption will become a primary concern to keep its environmental footprint and
operational costs at acceptable levels without neglecting its ultimate purpose: to equip highly
critical applications with the computational capacity to solve extremely resource hungry
problems.

Focusing on the application side, achieving scalable performance and high system
throughput has always been a cumbersome task. To make things even more challenging,
next-generation HPC applications can no longer be considered as
computation-/communication-intensive, monolithic blocks with minimal and infrequent I/O
requirements. The revolution of Big Data and Machine Learning, the emerging Edge
Computing and IoT, with the scale of modern HPC systems and cloud datacentres, are
rapidly changing the way we solve scientific problems. Novel computational patterns are
rapidly evolving, where the solution of a problem may require a workflow of diverse tasks,
performing simulations, data ingestion, data analytics, machine learning, visualization,
uncertainty quantification, verification, computational steering and more. Existing solutions
may render the execution of such applications in a large-scale supercomputer either
impossible, or extremely suboptimal in terms of time to solution and user cost, due to the
absence or inefficiencies of appropriate methods to compose, deploy and execute workflows,
and/or due to their extreme requirements in I/O resources, which cannot be met by the
system capacity without holistic and sophisticated deployments.

The ultimate goal of REGALE is to pave the way of next generation HPC applications to
exascale systems. To accomplish this, we define an open architecture, build a prototype
system and incorporate in this system appropriate sophistication in order to equip
supercomputing systems with the mechanisms and policies for effective resource utilization
and execution of complex applications. The REGALE architecture and prototype will be
co-designed considering both state-of-the-art and next generation HPC applications,
maximizing in this way its applicability.

REGALE takes an approach that considers two interacting paths: The first path is largely
motivated by the PowerStack initiative [1] that primarily targets multi-criteria operation of
supercomputing services with a strong focus on power and energy efficiency. The second
path focuses on the requirements posed by non-conventional, workflow-based applications
and their integration with an appropriate workflow engine, with a goal to achieve easy and
flexible use of supercomputing resources at large scales.

This deliverable sets the critical stepping stone for the implementation of REGALE: It starts
from the project’s strategic objectives (Section 2), our strawman architecture and software

REGALE - 956560 7 05.05.2023



D1.2 REGALE Intermediate Architecture

tools (Section 3), and analyzes a set of relevant use cases together with their requirements
(Section 4). These are then used to define the REGALE architecture, components, and
interfaces (Section 5) instantiated with the use of the various modules brought in REGALE
and evolved throughout the project by the partners (Section 6). Finally, Section 7 concludes
the intermediate status of this work and introduces several future research directions to the
end or even after the end of this work.

REGALE - 956560 8 05.05.2023



D1.2 REGALE Intermediate Architecture

2. Project Strategic Objectives
REGALE Strategic Objectives: REGALE envisions to meet the Strategic Objectives (SO)
presented below.

Strategic Objective 1 (SO1): Effective utilization of resources. This strategic objective will
consider the huge amount of resources available in exascale class machines and the
resource footprints of both traditional and emerging applications. The improvement in
resource utilization will indicatively translate to a combination of:

● SO1.1: Improved application performance. Better allocation of resources that
considers the exact application footprint, data requirements, control and data flows
will drastically improve performance for critical applications. This is especially the
case for the next generation, workflow-based applications where one of the major
problems is the highly suboptimal use of resources, leading to disappointing
performance, inability to scale, misuse of resources and consequent over charges of
end users.

● SO1.2: Increased system throughput. By taking global and elaborate decisions
considering the entire mix of workloads to be executed in the supercomputer, we will
be able to significantly raise the system throughput, servicing more applications per
day and ultimately increasing user satisfaction and system impact.

● SO1.3: Minimized performance degradation under the power constraints. Power
capping is a common mechanism to align supercomputer consumption with the power
availability and charges of the supplier. In REGALE we will replace the current
brute-force, performance-oblivious strategies by a set of sophisticated policies for
dynamic adaptation to power envelopes without compromising application
performance and system throughput.

● SO1.4: Decreased energy to solution. REGALE will support the operation of a
supercomputer with energy consumption as a first class citizen. In this case we will
incorporate mechanisms and policies to minimize energy to solution if this is
promoted by the operation policy.

Strategic Objective 2 (SO2): Broad applicability. This strategic objective will guide our
architecture design and prototyping towards maximizing openness, platform independence,
scalability, modularity, extensibility and simplicity, allowing for its implementation with various
software modules, on any supercomputing platform, for the realization of SO1. In particular,
this will be achieved through compatibility to relevant specifications and standards.

To assess if this SO is met, we will validate the existence of the following key features:
● Scalability: The REGALE system should be able to operate in exascale setups and

beyond. To assess this objective we will perform experimental results and simulation,
and we will also extrapolate our results to larger system scales. Our goal is for our
prototype system to have minimal overheads across all scales.

● Platform independence: The REGALE system should be able to operate across all
major architectures of large supercomputing facilities and be free of any vendor
lock-in. This will be validated by our integration process where we will provide full
integration scenarios with at least two vendor-specific solutions and will provide
indicative solutions for all major modules of the HPC ecosystem.

REGALE - 956560 9 05.05.2023



D1.2 REGALE Intermediate Architecture

● Extensibility: The REGALE system should be extensible to any new feature or
component that aligns to its open architecture. This will be validated through our
implementation process. We will build the REGALE system with gradual incorporation
of features, starting from the critical ones and adding sophistication and complexity
within the various versions in the development and integration process.

Strategic Objective 3 (SO3): Easy and flexible use of supercomputing services.
Widening the use of advanced computational and data facilities beyond the highly skilled
traditional HPC users requires significant efforts on the side of the centers. In REGALE we
will release the developers and users of complex applications that originate from new
industrial use cases from the extremely cumbersome task to finetune the execution of their
application on an exascale system. Moreover, we will equip them with an easy-to-use set of
tools to facilitate the development and deployment of their applications to exascale systems.

To assess if this SO is met, we will validate the existence of the following key features:
● Automatic allocation of resources: Users of complex applications should not bother

with the way their application is distributed on an exascale system. We will compare
the process of requesting resources between the current state-of-the-art systems and
applications and the REGALE solution.

● Programmability: Application developers should find the REGALE architecture and
system easily accessible to develop and deploy their code(s). This will be qualitatively
assessed by the application developers and pilot users of the consortium by
comparing the features of their application before and after the optimizations within
REGALE.

● Flexibility: Applications should be able to execute under lightweight virtualization
within the REGALE- enabled system.

The architecture, integration and evaluation plans that are presented in this deliverable are
driven by REGALE’s strategic objectives.

REGALE - 956560 10 05.05.2023



D1.2 REGALE Intermediate Architecture

3. Intermediate Architecture and Software Tools
In this section, we first introduce the REGALE intermediate architecture and its
components/actors. We second summarize the software tools to be used in this project. We
finally introduce our implementation paths that integrate the tools.

Figure 1: REGALE Intermediate Architecture

Figure 1 illustrates the general intermediate architecture. The descriptions of key actors and
software components are as follows.

Human actors:
A. Site administrator: Configures the site-level policy appropriately prioritizing between

power/energy/performance and quantifies the relevant constraints. The policy can be
changed according to the current needs with respect to objectives and/or constraints.

B. User: This actor submits a job for execution to the system, requests resources for her
job and optionally provides information on the performance behaviour of her
application.

C. Developer: This actor develops, optimizes and instruments her application with
regard to relevant objectives to facilitate further optimization by the system and
collection of profiling information.

System modules:
1. System manager: The system manager receives as input a set of jobs to be

scheduled within the system and indicatively decides upon when to schedule each

REGALE - 956560 11 05.05.2023



D1.2 REGALE Intermediate Architecture

job, to which specific compute nodes to map it, and under which power budget or
setting. For this, it constantly monitors and records power and energy telemetry data,
and controls power budgets/settings and/or user fairness. The system manager
applies system-wide optimizations and consists of the following two sub-modules that
work cooperatively.

● Resource and Job Management System (RJMS): The RJMS manages jobs
submitted by users and decides the assignments of node resources to them
and their launch timing as well. The decisions are based on the job information
given by the users, power/performance features characterized by the Monitor
(see next), and the node/job/system power budget information managed by
the SPM as well as the scheduling policy given by the site administrator. The
decisions are principally made in a static and proactive manner.

● System Power Manager (SPM): The SPM manages the power budget
allocations across nodes/jobs, including compute nodes, I/O nodes, and
others. The SPM provides the functionality to set the power cap to the entire
system and also can optimize the power budgeting across nodes depending
on the objective/constraints given by the site administrator, while interacting
with other modules such as the node manager, monitor, and others.

2. Job manager: The job manager performs job-centric optimizations considering the
performance behaviour of each application, its fine-grained resource footprint, its
phases and any interactions/dependencies dictated by the entire workflow it
participates in. It manages the control knobs in all compute nodes participating in the
job and optimizes them during runtime to achieve the desired power consumption (at
maximum possible performance), efficiency, or other settings. Additionally, it scalably
aggregates application profile/telemetry data from each node servicing the given job
through the system manager.

3. Node manager: The node manager provides access to node-level hardware controls
and monitors. Moreover, the node manager implements processor level and node
level power management policies, as well as preserving the power integrity, security
and safety of the node. For this reason, all the power management requests coming
from the software stack are mediated by the node management.

4. Workflow engine: The workflow engine analyses the dependencies and resource
requirements of each workflow and decides on how to break the workflow into specific
jobs that will be fed to the system manager. Modern workflows may be composed of
hybrid Big Data, Machine Learning and HPC jobs; hence a key role for the workflow
engine is to provide the right interfaces and abstractions in order to enable the
expression and deployment of combined Big Data, HPC jobs. The distribution of jobs
can vary depending on the objective goals defined by the optimization strategy.

5. Monitor: The monitor is responsible for collecting in-band and out-of-band data for
performance, resource utilization, status, power and energy. The monitor operates
continuously without interfering with execution, with minimal footprint, and collects,
aggregates, records, and analyses various metrics, and pushes necessary real-time
data to the system manager, the node manager and the job manager. The monitor
has the following sub-modules.

● Signature Handler1: The signature handler receives the information of job
identification from other components and then generates the signature to

1 Although the signature handler is located inside the monitor module as it accesses profiles or
monitored data at runtime, it may be an independent module in an actual implementation. We will
continue assessing where to locate this module for the final version of our Regale architecture.

REGALE - 956560 12 05.05.2023



D1.2 REGALE Intermediate Architecture

characterize the job. The signature could be calculated with the job
information given by the user, the associated job profile of previous runs, or
the statistics acquired at runtime.

● Estimator2: The estimator assesses the job properties (e.g. performance,
power/energy consumption, or others) or system status (e.g. anomaly) by
using such as the signature generated by the signature handler.

● Dashboard: The dashboard provides a set of functionalities that display the
node/job status obtained at runtime (or given from a profile) to the developer.

To realize the software architecture, we integrate the following tools. TABLE 1 represents the
general classifications of our software tools into the system modules. Note the details of our
software tools are described in our previous deliverable (D1.1), except for the following one:

● Execution Profile Compute Module (EPCM) is newly introduced to help our OAR-BEO
integration plugin with providing functionalities to estimate the power/performance
properties based on the relevant job profile.

TABLE 1: Tool Classifications
X = Supported, / = Under Development, ? = Potential Support

Monitor
Node

Manager
Job

Manager

System
Manager Workflow

Engine
DB Dashb

oard
Estim
ator

Sig
Hndlr RJMS SPM

SLURM X

OAR X

DCDB X X / /

BEO X X X X

BDPO X

EAR X X ? ? X X X

Melissa X

RYAX X

Examon X X / /

COUNTDOWN X

PULPcontroller X

BeBiDa X

EPCM / /

We realize different implementations using the above tools based on the REGALE
intermediate architecture, which can be divided into PowerStack and workflow engine paths,
and the latter consists of Mellissa path and RYAX path. On one hand, the PowerStack path
aims to prototype a software stack to enable full-scale production-grade solutions for a
variety of power/energy management use cases. On the other hand, the workflow engine
paths focus more on the application side, i.e., integrating the workflow management tools

2 The estimator can also be an independent module or can sit inside of multiple different modules. The
location of this module may change in the final version of our Regale architecture.

REGALE - 956560 13 05.05.2023



D1.2 REGALE Intermediate Architecture

(Mellissa or RYAX) with our pilot applications as well as other components in our architecture,
in order to realize next-generation application management techniques including automatic
parameter sensitivity analysis, ML-based simulation surrogate and dynamic concurrency
controlling. The PowerStack and workflow engine paths will be first integrated individually
because of their different focuses, however we envision combining them in the later stage of
the project. In this deliverable document, we mainly focus on the PowerStack path, define
use cases or policies with requirements and describe the needed architectural modules. For
the workflow engine paths, we introduce their software architecture and the functionalities
they support.

REGALE - 956560 14 05.05.2023



D1.2 REGALE Intermediate Architecture

4. PowerStack Use Cases and Requirements
In this section, we applied minor updates from the previous deliverable D1.1 based on our
continuous discussions in WP1 and ongoing software integrations in WP3. However, note
most of the contents and the core concepts are exactly the same as those described in D1.1.

In Task 1.1, we gathered the requirements posed by all key actors in the REGALE
architecture, with a particular focus on the PowerStack path. Note the requirements, as well
as use cases, components, and interfaces, will be extended to cover all the other paths
including Melissa, RYAX, and sophistication paths in the final version of the deliverable. To
this end, we conducted our studies in both top-down and bottom-up ways. The top-down
approach involved detailed discussions around the possible use cases for the PowerStack
path, starting from the most naive one toward much more sophisticated power management
schemes, and then we clarified the requirements for each use case. The results are
described in this section. The bottom-up approach surveyed the current state of our software
tools in terms of what functionalities they support and how they can interact with other tools,
in order to gain some insights for the general and open requirements/architecture as well as
to confirm the possible use case supports with these tools and how they should be
integrated.

Figure 2: Holistic Power Management and Our Current Scope

4.1 Our Current Scope and Hardware Requirements
Figure 2 illustrates an example of our target HPC systems, assuming holistic power
management, and our current scope. The system consists of multiple different high-level
hardware components such as compute nodes, I/O nodes and other facilities including the
cooling system. In each computer node, there are different components such as CPUs,

REGALE - 956560 15 05.05.2023



D1.2 REGALE Intermediate Architecture

GPUs, NICs and DRAM memories. The overall power management is governed by the
system power manager daemon launched on the scheduler (or admin) nodes. More
specifically, the system manager (SPM) distributes power budgets across nodes or any other
target facilities, which could be in a closed or open loop manner. The closed-loop control
makes power budget decisions based on the actual power consumptions, while the
open-loop option does not utilize them. The node/job managers and the monitor are
distributed across the nodes, and they are responsible for the power setups on node
components and the measurement within a node. In this period of time, we focus on the
power management only on compute nodes as they are generally the major power
consumers in HPC systems. In other words, we fix the power budget (or limit) setups on the
other kinds of nodes or facilities at their maximum. In the future work, we intend to include the
other components and scale down/up their power budgets depending on their utilizations.

Figure 3: Power Capping Interface Requirements

In order to handle global power budgets across different kinds of components/facilities, we
need to define and unified currency for the power exchanges. More specifically, different
components have different knobs to trade-off performance against power (e.g., clock
frequency for CPUs or temperature setup for cooling facilities), here we call them as power
management knobs, and these knobs can change or can be extended/removed for future
products. Therefore, directly controlling them from the highest-level component, typically the
system manager, would not make sense, and the hardware specific aspects should be
hidden as much as possible.

For this reason, we set the following requirements for hardware components to include them
for the power budgeting: (1) they (or other low-level software layers such as operating
systems) must provide a software interface to set power cap (or limit) to them, which must be
controllable from the PowerStack software; (2) they must periodically monitor the actual
power consumption and adaptively control the hardware knob that can scale down/up the
power consumption as a function of activity or throughput, in order to enforce any given
power cap; and (3) the interface must also provide the actual power consumption to the
overlying software stack. The third point is not needed for open-loop power management use
cases, but is required for closed-loop options, e.g., a higher layer of the software stack
detects the unused power on a component and redistributes it to others.

Figure 3 illustrates this feature with different components. For CPUs and DRAM memories,
Intel’s RAPL interface [3] can be used to enforce the power cap as well as to sense the
power cunsumption. Recent GPUs also support such functionalities (e.g., nvidia-smi interface

REGALE - 956560 16 05.05.2023



D1.2 REGALE Intermediate Architecture

for NVIDIA GPUs [4]). Cooling facilities generally do not support the power capping features,
and a software layer to control the power is needed to include them for the power budgeting
loop. We can trade the power budgets across different hardware by using the interfaces, i.e.,
setting power caps to them accordingly and adjusting them depending on their demands
detected by use of the measured power. In this document, we call this control feature a
power cap knob as a subset of general power management knobs. In addition to the power
cap knob, as an option, we also consider directly controlling the hardware knobs to trade off
power and performance for some use cases while keeping the power cap constraint (e.g.,
minimizing energy while keeping the power constraint).

Figure 4: Interface Extension for Thermal Capping

A more advanced option for the interface is augmenting a thermal capping functionality.
Figure 4 illustrates an example with CPU. Similar to the power capping, to enable the thermal
capping, the interface should support a closed-loop controlling using the power management
knob(s), including any power-performance knobs such as clock scaling and the power cap
knob, while monitoring the temperature so that it doesn’t exceed the designated temperature
limit. The interface should also be able to report the temperature so that we can double check
the correctness even if we never exchange the temperature across nodes/jobs/components.
In this document, we call this temperature control feature a thermal cap knob.

The thermal capping feature is widely supported in modern commercial processors. They
usually have a temperature controlling hardware to prevent overheating, and if the
temperature exceeds a predetermined threshold (usually set very high such as 80°C), the
hardware module attempts to throttle the throughput by scaling down the clock frequency,
thinning out the clocks, or any other throttling mechanisms. The thermal threshold is exposed
to the operating system layer for several processors [5]. If the threshold is constant, which is
the case for some commercial processors, the temperature capping should be implemented
in a low-level software layer using the mechanism shown in Figure 4. This functionality can
be implemented inside of the Node Manager tools, such as PULP Controller and BEO.

4.2 Use Case / Requirements Description Format
In this section, we define the description formats of use cases and their requirements in a
general and comprehensive manner, following the open standard philosophy of our REGALE
architecture. A power control optimization should be governed by a certain optimization
problem (e.g., maximizing total system throughput under a power constraint), and thus we
define a use case in a form of an optimization problem while covering the following aspects:

REGALE - 956560 17 05.05.2023



D1.2 REGALE Intermediate Architecture

1. Optimization objective(s) for power control
2. Constraint(s) for power control
3. Control knob(s)
4. Temporal/spatial granularity
5. Optimizer(s)

Optimization objective(s) for power control specifies the objective function(s) to optimize
the power control hardware. This can be a system-focused objective (e.g., maximizing total
system throughput or energy-efficiency) or an application-focused one (e.g., minimizing
application runtime or energy consumption). We can cover multi-objective optimizations as
well by setting the objective function as a linear sum (or any other arithmetic function) of
these different objectives and setting the weights (or coefficients) accordingly. As an extreme
case, the most naive one does not have any objective functions, but just sets power
management knobs to functionally enforce constraints without any optimizations.

Constraint(s) for power control is one (or more) constraint(s) set when controlling power
management knobs. This could be power, thermal, performance or any other constraints
(including anomaly tolerability/detectability) at the entire system or application level,
depending on the use case. In case there is no optimization objective, only the constraints
affect the actual power management knob setups. For instance, we attempt to maximize total
system throughput under given power and thermal constraints in a use case by optimizing
the power management knob setups. In case, we have no objective function, we only enforce
the limits but do not optimize anything.

Control knob(s) specifies what hardware/software knobs we control to achieve the
objective(s) while keeping the constraint(s) in the use case. This includes any kind of power
management knobs including in-band power controllers in CPUs, GPUs, or DRAM memories
(e.g., RAPL-based power capping or clock scaling features) and out-of-band ones, such as
the temperature controller inside of a cooling facility. Further, we also cover other means to
optimize power/energy, such as job scheduling and power/energy-aware code optimizations.
Some use cases highly rely on the control knobs (e.g., need the power cap knob), and thus
applicable use cases to a system highly depend on the available knobs as well.

Temporal/spatial granularity of power control determines when/where the optimization is
applied. The temporal granularity decides the timing of when the power knob setup changes,
such as only at a job launch or in a periodical manner with a certain interval. The spatial
granularity specifies where the optimization happens, such as within each compute node,
across different compute nodes/jobs, or at an even coarser level, e.g., across the entire
compute nodes, the entire I/O nodes, and the cooling facility. The power control decision
would be hierarchical when combining them.

Optimizer(s) defines at which level the power control optimization is applied. This can be at
system level, at application level, or the combination of both. There is no optimizer if the
power constraint is manually set by the site administrator.

On the other hand, by following the general REGALE architecture shown, we specify the
requirements for all the components/actors per use case. More specifically, we cover the
following components/actors in the specifications here. Note that we will consider adding the
workflow engine to cover more use cases when integrating the different paths in future work.

REGALE - 956560 18 05.05.2023



D1.2 REGALE Intermediate Architecture

1. Site Admin
2. Users/Developers
3. System Manager (RJMS/SPM)
4. Job Manager
5. Node Manager
6. Monitor (Dashboard/Signature Handler/Estimator)

Site Admin can have some roles in several use cases. One example is interacting with the
system for a certain setup (e.g., total system power constraint), and another one is fixing their
policy such as token consumption accounting, i.e., the rules on how much they charge for a
job, so that it fits well the given use case. For instance, some of the user-level optimizations
should pay incentives for users otherwise they are not profitable for users (but at least
beneficial for the site admin).

Users/Developers also can have some roles for optimization as well. As an example, for a
user-level power or energy optimizations, they might need to link some relevant libraries to
optimize their code. Another example is that setting up some environmental variables in their
job scripts could be required to enable some features.

System Manager (including RJMS and SPM), Job Manager, Node Manager, Monitor are
the software components included in the REGALE architecture (see Figure 1). Some use
cases need to coordinate all of them while others may need only some of them. The
requirements highly depend on all the aspects that determine the use cases (objectives,
constraints, etc).

4.3 Requirement Specifications per Use Case
Before selecting and defining use cases, we consider different levels of sophistication for
different aspects as shown in TABLE 2. By designating the level for each aspect, we can
define a use case. As for objectives, we can increase the number of objective functions to
consider, and we will work on multi-objective optimizations in WP2. For constraints, we will
start from a single constraint (e.g., power) and then later explore multiple constraints (e.g.,
power and temperature constraints) as well. For the temporal granularity, we can both cover
static and dynamic manners. As for the spatial granularity, the initial step is setting the node
power management knobs evenly across different nodes, and we gradually include
optimizations at different levels. As for the knobs for optimizations, we first target only the
CPU power management knob, then cover multiple different components (e.g., GPUs and
memories), and finally include job scheduler-level power and energy optimizations.

TABLE 2: Different levels of sophistication
Level 1 Level 2 Level 3 Level 4

Objective(s) None One (system or
app focused)

Multiple
objectives …

REGALE - 956560 19 05.05.2023



D1.2 REGALE Intermediate Architecture

Constraint(s) One (e.g., power
constraint)

Two (e.g., power
+ temperature)

More (e.g., power
+ temp + anomaly
detectable)

…

Temporal
Granularity

Statically set by
site admin

Statically set
when job launch

Dynamically
adjusted at

runtime
…

Spatial
Granularity

Entire compute
nodes (all nodes
work uniformly)

Intra- xor
inter-node

optimization

Both intra- and
inter-node

optimization

Include other
kinds of nodes or

facilities

Knob(s) CPU power
mgmt knob

Power mgmt
knobs of multiple

components

Include job
scheduling

optimizations
…

Optimizer(s) None
One (system xor

user level
optimization)

Both system and
user level

optimization
…

REGALE - 956560 20 05.05.2023



D1.2 REGALE Intermediate Architecture

4.3.1 Basic Use Cases
We start from the most naive use case, i.e., all Level 1 options in the table, and the
requirements are shown in TABLE 3. In this use case, we set the power limit to the entire set
of compute nodes. The allocated power budget is distributed evenly across the nodes without
any optimizations. We do not have any objective function here, but only try to enforce the
power limit. The power control is conducted in an open-loop manner, i.e., we do not use any
feedback from the measurement side, and the power capping interface is responsible for
keeping the constraint.

TABLE 3: Requirement Specifications for Basic Power Capping (Basic)

Use case Definition Requirements

[Basic] Keep my
system under power
cap

Note:
Providing system-level
power capping
functionality w/o any
optimizations; power
budget is distributed
evenly across nodes;
Open-loop control w/o
using measured power
at runtime

Objectives: None (Level1)

Constraints: Power
(Level1)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power cap to
System Manager (e.g., 1MW)

Users/Developers: None

System Manager (SPM):
Capability/interface to talk to
each node manager to set
power cap to them; HW profiling
functionality to obtain the range
of power consumption when
scaling the target knob; Report if
the power budget setup is
outside of the range or if a
significant power budget
violation happens

Node Manager: Talk to HW and
set up power cap based on the
instruction by the system
manager; report if an
error/anomaly happens to the
system manager

Job Manager: None

Monitor: None

We then go one step further in terms of the constraints set up. More specifically, we augment
the temperature capping functionality to Basic – here, we call this use case as Basic+. Note

REGALE - 956560 21 05.05.2023



D1.2 REGALE Intermediate Architecture

that to apply this thermal capping along with the power capping, we need a proper interface
as described in Section 4.1. TABLE 4 summarizes the requirements to support this use case.
Aside from the necessity for the temperature capping interface, the requirements are almost
the same as those of Basic.

TABLE 4: Requirement Specifications for Basic Power and Thermal Capping (Basic+)

Use case Definition Requirements

[Basic+] Keep my
system under power
and thermal caps

Note:
Providing system-level
power and thermal
capping functionality
w/o any optimizations;
power budget is
distributed evenly; the
same temperature
setup for every node;
Open-loop control w/o
using measured power
nor temperature at
runtime

Objectives: None (Level1)

Constraints: Power and
temperature (Level2)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power and
thermal caps to System
Manager (e.g., 1MW & 50°C)

Users/Developers: None

System Manager (SPM):
Capability/interface to talk to
each node manager to set
power and temperature caps to
them; HW profiling functionality
to obtain the range of power
consumption when scaling the
target knob; Report if the power
budget setup is outside of the
range or if a significant power
budget violation happens

Node Manager: Talk to HW and
set up power and thermal caps
based on the instruction by the
system manager; report if an
error/anomaly happens to the
system manager

Job Manager: None

Monitor: None

In TABLE 5, we extend Basic+ by adding the anomaly detectability requirement, which we
call Basic++ here. If a target hardware region violates the power or thermal limits more than
a certain threshold longer than a predetermined duration, this should be reported. Here, we
just consider the detection and report functions, but in the future deliverables, we will cover
more sophisticated options such as an anomaly tolerance option with automatic anomaly
handling methodologies. An anomaly can happen at a variety of granularity levels, and thus
anomalies should be detectable at all the software components. In the future work, the
anomaly detection, correction, and mitigation should be realized at different levels in a
hierarchical manner: (1) application; (2) subsystem; (3) node; and (4) room level. We can
consider a variety of use cases even only on anomaly handling methodologies for different
scenarios or target hardware.

TABLE 5: Requirement Specifications for Basic Power and Thermal Capping with
Anomaly Detectability (Basic++)

Use case Definition Requirements

REGALE - 956560 22 05.05.2023



D1.2 REGALE Intermediate Architecture

[Basic++] Keep my
system under power
and thermal caps with
anomaly detectability

Note:
Providing system-level
power and thermal
capping functionality
w/o any optimizations;
power budget is
distributed evenly; the
same temperature
setup for every node;
Open-loop control w/o
using measured power
nor temperature at
runtime; Anomaly is
detectable at any
components

Objectives: None (Level1)

Constraints: Power and
temperature constraints +
anomaly detectable (Level3)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power and
thermal caps to System
Manager (e.g., 1MW & 50°C);
Handle anomaly node reported
by System Manager

Users/Developers: None

System Manager (SPM):
Capability/interface to talk to
each node manager to set
power and temperature caps to
them; HW profiling functionality
to obtain the range of power
consumption when scaling the
target knob; Report if the power
budget setup is outside of the
range or if a significant power
budget violation happens;
Anomaly detection function in
terms of power and temperature
(reported by other components);
Report when anomaly is
detected to site admin

Node Manager: Talk to HW and
set up power and thermal caps
based on the instruction by the
system manager; report if an
error/anomaly happens to the
system manager

Job Manager: Report if an
error/anomaly happens to the
system manager

Monitor: Provides information
on facility and nodes anomalies

4.3.2 Advanced Use Cases
Next, we extend the Basic use case by optimizing the hardware power management knob
setup while following a given objective function. Here, we cover the following objectives:
maximizing total system throughput (SysThru); minimizing total system energy (SysEne);
maximizing application performance (AppPerf); and minimizing application energy-to-solution
(AppEtS). For all of these use cases, we assume the site administrator sets the power

REGALE - 956560 23 05.05.2023



D1.2 REGALE Intermediate Architecture

constraint to the entire set of compute nodes, and then we optimize the power budgeting
across these nodes while keeping the constraint to achieve a given objective. TABLE 6
describes the definition/requirements for each of these options. Here, we consider power is
only the constraint, however this can be extended to cover more constraints by adding
requirements listed in Basic+ or Basic++. Another option for the constraints is considering
average or maximum application performance degradation. For SysThru, we consider
closed-loop power controls in these use cases, i.e., we dynamically adjust the power
management knob in accordance with the measured power consumption and resource
utilizations at runtime. These measurements are used for estimating the power demand of a
node by the Node Manager, which is then sent to the System Manager to redistribute the
power budgets across nodes. SysEne is almost the same as SysThru except for the objective
function and an option to scale down the total power budget allocated to the entire set of
compute nodes, which could improve energy efficiency but wouldn’t improve throughput. On
the other hand, AppPerf and AppEtS are application level (or user level) optimizations. In
these use cases, we utilize application profiles of previous or test runs, which are provided by
Monitor. By analyzing the profiles, Job Manager decides the setups of the target power
management knob (CPU power cap, CPU clock frequency scaling or any others) as well as
performs code tuning as an option. One needs to link the specific libraries to the code to
realize these application level options.

TABLE 6: Requirement Specifications for Optimization Variants

Use case Definition Requirements

[SysThru] Maximizing
total system throughput
under power cap

Note:
Optimize power budget
allocations across
nodes under the total
system power cap so
that the total system
throughput can be
maximized; Closed-loop
power management at
runtime;
Assuming over
provisioned situation;
Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Statistically set at runtime
(Level2) or dynamically
adjusted at runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: System-level
optimization (Level1)

Site Admin: Set power cap to
the entire compute nodes via
System Manager (e.g., 1MW);
Revisit the token accounting
policy to deal with potential
unfairness

Users/Developers: None

System Manager (SPM): All the
functionalities supported in
Basic;
A profile-based power budget
decision making (static);
Periodical power budget
redistribution function based on
the reported unused power and
power budget request by Node
Manager (dynamic); Power
budget distribution algorithm to
maximize throughput

Node Manager: All the
functionalities supported in
Basic;
Policy to detect whether the
node needs less/more power
budget and report it to System

REGALE - 956560 24 05.05.2023



D1.2 REGALE Intermediate Architecture

Manager (dynamic)

Job Manager: None

Monitor: Providing monitoring
data to SPM and Node Manager
when dynamically adjust the
power cap; Providing
power/performance estimation
to other actors

[SysEne] Minimizing
total system energy
consumption under
power cap

Note:
The requirements are
almost the same as
those for SysThru;
Need to update the
power distribution
policy/algorithm from
SysThru, in particular
Node Manager level;
Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

Objectives: Min system
energy consumption
(Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Statistically set at runtime
(Level2) or dynamically
adjusted at runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: System-level
optimization (Level1)

Site Admin: Same as SysThru

Users/Developers: None

System Manager (SPM): Same
as SysThru; Scaling down total
system cap adaptively is an
option

Node Manager: Same as
SysThru but need updates in the
power budget request policy,
i.e., detecting the optimal power
mgmt knob setup to minimize
energy (or maximize energy
efficiency)

Job Manager: None

Monitor: Providing monitoring
data to Node Manager when
dynamically adjust the power
cap; Providing
power/performance/energy
estimation to other actors

[AppPerf] Maximizing
application performance
under power cap

Note:
Similar to SysThru, but
allows users to optimize
power knobs while
keeping power cap;
Adding more
constraints is an option
(e,g., thermal cap)

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power mnmt
knob (Level1)

Temporal Granularity:
Statically set when job
launch (Level2) or
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Site Admin: Same as SysThru;
Allow user level (or Job
Manager level) power
management

Users/Developers: Link the
relevant library (provided by Job
Manager) to their code

System Manager: Same as
SysThru

Node Manager: Same as
SysThru except that it needs to
provide an interface to let Job
Manager know the current
power knobs and allow it to
further optimize them

REGALE - 956560 25 05.05.2023



D1.2 REGALE Intermediate Architecture

Optimizers: App-level
optimization (Level1)

Job Manager: Power-aware
code tuning functionality using
code analysis or profile-based
optimization; Accessible power
management knobs (power cap,
clock freq, etc.)

Monitor: Providing monitored
stats to Job Manager.

[AppEtS] Maximizing
energy to solution for
app under power cap

Note:
Almost same as
AppPerf except that the
objective is minimizing
energy; Adding more
constraints is an option
(e,g., thermal cap,
application speed-down
limit)

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power mgmt
knob (Level1)

Temporal Granularity:
Statically set when job
launch (Level2) or
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: App-level
optimization (Level1)

Site Admin: Same as AppPerf

Users/Developers: Same as
AppPerf

System Manager: Same as
AppPerf

Node Manager: Same as
AppPerf

Job Manager: Same as
AppPerf

Monitor: Same as AppPerf
except that the optimization
policy must be updated.

4.3.3 More Advanced Use Cases
We then cover more advanced options by extending one of the above optimization variants.
We focus on SysThu as an example, but the requirements here are general and should stand
regardless of the objective function setup while who optimizes can be different. First, we
consider NodPowShift: power shifting across different components inside of a node. To
support this option, the most significant modification would be in Node Manager, i.e.,
extending the existing knob control policy and providing the functionality to distribute power
budgeting among in-node components. Second, as a next step, we consider a use case
named SchedOpt: power-aware job scheduling support along with power management knob
optimizations. This use case requires application characteristic analysis using historical data

REGALE - 956560 26 05.05.2023



D1.2 REGALE Intermediate Architecture

collected by Monitor, regarding throughput, energy efficiency, and so forth under a given
power control scheme. The requirements for these two use cases are specified in TABLE 7.

TABLE 7: Requirement Specifications for Advanced Use Cases

Use case Definition Requirements

[NodPowShft]
Maximizing a given
objective function under
one or more constraints
via coordinating knobs
of different in-node
components

Note:
Should be agnostic in
objectives and
constraints except for
who manages it and the
actual policy

Objectives: Max system
throughput or min system
energy (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap +
other components like GPU
or DRAM memory power
caps (Level2)

Temporal Granularity:
Statistically set at runtime
(Level2) or dynamically
adjusted at runtime (Level3)

Spatial Granularity: Inter-
and intra-node optimization
(Level3)

Optimizers: App- or
System-level optimization
(Level1) or both (Level2)

Site Admin: Same as SysThru

Users/Developers: Same as
SysThru

System Manager: Same as
SysThru

Node Manager: Needs a layer
to distribute a power cap to
different component; Update
the policy to exploit the above
feature

Job Manager: Same as
SysThru

Monitor: Same as SysThru

[SchedOpt] Maximizing
total system throughput
under power cap w/ job
scheduling optimization
(+ intra-node power
shifting)

Note:
Should be agnostic in
objectives and
constraints; Needs job
characteristics
estimation using
historical data collected
by Monitor

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap +
other components like GPU
or DRAM memory power
caps + job scheduling
(Level3)

Temporal Granularity:
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter-
and intra-node optimization
(Level3)

Site Admin: Same as
NodPowShft

Users/Developers: Same as
NodPowShft

System Manager (RJMS):
Power-aware scheduling policy
using the historical job
statistics; Accessible to system
power status such as
remaining power budget on the
system

Node Manager: Same as
NodPowShft

Job Manager: Same as
NodPowShft

REGALE - 956560 27 05.05.2023



D1.2 REGALE Intermediate Architecture

Optimizers: App- or
System-level optimization
(Level1) or both (Level2)

Monitor: Providing collected
job statistics under power
optimizations

4.3.4 Discussions
In summary, we picked and defined the classes and use cases listed in TABLE 8. Some of
these use cases are aligned with the PowerStack initiative community [1]. Our major
contribution here is describing them in a generalized form while defining the levels of
sophistication in different aspects shown in TABLE 2.

TABLE 8: Summary of classes and use cases

Class Code name

Basic Basic, Basic+, Basic++

Advanced SysThru, SysEne, AppPerf, AppAtS

More Advanced NodPowShft, SchedOpt

We will continuously assess and update the use cases in terms of necessity, coverage,
comprehensiveness, and so forth throughout the project. Our goal of this work package is not
defining use cases and architecture in order to integrate software in WP3, but is rather
comprehensive. Our ultimate goal here is designing an open standard architecture, while
reflecting the community-wide trends/opinions including outside of the project such as the
PowerStack initiatives [1]. For this reason, we will cover use cases and architectural modules
that may not be implemented in WP3. However, they will work as a milestone for any
current/future software implementations to realize power-aware HPC. In WP3, as an
example, we picked up a set of use cases relevant to our software tools and are integrating
them to realize the use cases. Further, we will continuously apply minor updates to our use
cases and architecture based on the practices experienced in WP3.

In the rest of the deliverable, we describe the necessary functionalities/interfaces to realize
these use cases in Section 5. Based on the detailed architecture descriptions, we assessed
the current state of our software tools, decided software integration instances (or scenarios),
and then started integrating our tools to realize the use cases from naive to sophisticated.
Section 6 summarizes the current status of our integrations as well as the current coverages
of these use cases. Further, we also introduce more sophisticated use cases in the final
deliverables based on the ongoing studies conducted in WP2.

REGALE - 956560 28 05.05.2023



D1.2 REGALE Intermediate Architecture

5. Architecture and Interface Descriptions
In this section, we explain the details of the current architecture with a particular focus on the
PowerStack path. More specifically, by following our intermediate architecture described in
Section3 (see also Figure 1) as well as the PowerStack use cases and their requirements
clarified in Section4, we define the details of the Regale open architecture while providing a
necessary and sufficient set of interface functions to realize the PowerStack use cases
defined in the previous section. The interface functions in the real world can be implemented
as APIs, command line interfaces provided by services/modules, database queries,
configuration files, and so forth, depending on the functionalities, the details of which are
provided in the WP3 deliverable. Here, we describe them in a generic way consisting of
input/output variables. In this section, we firstly present the functions to realize the Basic Use
Cases (Basic/Basic+/Basic++) and then secondly describe the rest of the functions for the
rest of the advanced use cases. We then finally present how these use cases work using
these interface functions. In the final deliverable, the interface descriptions will cover also the
Melissa and RYAX paths, which are used for realizing sophisticated HPC workflow
managements. Note their initial architectures are introduced in the previous version of our
deliverable (D1.1).

The following text in the deliverable provides a roadmap of the high-level interfaces so that
the modules/actors in the REGALE architecture interoperate for different use cases. The
naming convention has been generated following a top-down approach. D3.1 followed a
bottom-up approach defining the list of interfaces needed by the tools. In the next period, we
will implement a common naming convention between the final architecture specification and
tools’ interface implementation.

5.1. Interface Functions for Basic Use Cases

Figure 5 depicts the overall architecture and the information flows among the software
components with a particular focus on the basic use cases. The system administrator
configures and selects the policy of the resource management and also designates the
system-wide power (or temperature) cap(s) for the basic power/thermal management. The
system administrator can add/remove a node to/from the power management target, based
on such as the anomaly detected by the Estimator.

REGALE - 956560 29 05.05.2023



D1.2 REGALE Intermediate Architecture

Figure 5: Overview of Architecture and Information Flow for Basic Use Cases

[Component Agnostic]

The following interface functions are needed for the site administrator to select/configure the
management policy:

Set_policy(Policy, Status)
IN Policy A power management policy as an instance of a use case
OUT Status List of errors observed during the procedure

Get_cur_policy(Policy, Status)
OUT Policy A power management policy as an instance of a use case
OUT Status List of errors observed during the procedure

Get_policy_list(Policy_list, Status)
OUT Policy_list List of power management policies available on this system
OUT Status List of errors observed during the procedure

These functions are exposed to the site administrator so as to designate a power
management policy (Policy) from a set of policies (Policy_list) derived from the use cases.
Once the policy setup is changed, the change is applied by selecting the associated
configuration or plugin. The output variable Status returns the acknowledgement or error type
to report if the policy setup completes properly or not. The interface could be provided by

REGALE - 956560 30 05.05.2023



D1.2 REGALE Intermediate Architecture

each component, or one software layer could govern the policy setup across different
components for the synchronization purpose.

The site administrator should be able to add/remove/modify a policy freely. To this end, the
following interface should also be provided. The function Add_policy is used to install a new
policy with the policy setup input stated as Policy_config, which could be a configuration file
or a plugin depending on the implementation.

Add_policy(Policy_config, Status)
IN Policy_config A new power management policy to install on this system
OUT Status List of errors observed during the procedure

Remove_policy(Policy, Status)
IN Policy A power management policy to remove from this system
OUT Status List of errors observed during the procedure

[System Manager (SPM)]

Here, we describe the interfaces provided by the System Manager. The RJMS is not involved
in the power management for the basic use cases, the interfaces below are only relevant to
the SPM.

To Site Administrator
The following three functions are used to set/check the total power cap set to the entire
system. These interfaces are used also for any other advanced use case when applying the
total system power constraint. The use case Basic++ is able to detect anomalies, and thus
they also report the detailed anomaly status if detected, using a variable Status. The site
administrator picks up a total power cap within the power cap range provided by the third
function.

Set_sys_pow_cap(Sys_pow_cap, Status)
IN Sys_pow_cap Total system power cap set by the site administrator
OUT Status List of errors observed during the procedure

Get_sys_pow_cap(Sys_pow_cap, Status)
OUT Sys_pow_cap Current total system power cap set by the site admin
OUT Status List of errors observed during the procedure

Get_sys_pow_cap_range(Min_sys_pow_cap, Max_sys_pow_cap)
OUT Min_sys_pow_cap Minimum total system power cap
OUT Max_sys_pow_cap Maximum total system power cap

Similarly, the following three functions are used to set/check the system-wide temperature
constraint setups. This set of interface functions are the same as the above system-wide
power cap functions except that the target is temperature.

Set_sys_temp_cap(Sys_temp_cap, Status)
IN Sys_temp_cap Temperature cap set to all nodes by the site admin
OUT Status List of errors observed during the procedure

REGALE - 956560 31 05.05.2023



D1.2 REGALE Intermediate Architecture

Get_sys_temp_cap(Sys_temp_cap, Status)
OUT Sys_temp_cap Current system-wide temperature capping setup
OUT Status List of errors observed during the procedure

Get_sys_temp_cap_range(Min_sys_pow_cap, Max_sys_pow_cap)
OUT Min_sys_temp_cap Minimum value for Sys_temp_cap
OUT Max_sys_temp_cap Maximum value for Sys_temp_cap

The following functions are used to configure the power management target, manually by the
site administrator. The Node_config could be a configuration file that specifies all the
power/thermal management target nodes with associated information, while the Node_list
lists up all the power management targets. The site administrator can manually exclude an
anomaly node from the target and include it once the anomaly status is solved.

Set_target_nodes(Node_config, Status)
IN Node_config Target nodes to apply power/thermal management
OUT Status List of errors observed during the procedure

Get_target_nodes(Node_list, Status)
OUT Node_list Current power/thermal management targets
OUT Status List of errors observed during the procedure

To Node Manager
The above functions are rather for the site administrator, while the following interfaces are
used to interact with the node manager. In particular, the following two functionalities are
used to set the power/thermal cap to the node selected with the ID (Node_id). The nodes
here include compute nodes, I/O nodes, or any kinds of system components. The variable
Status represents if the setup procedure completes successfully or not.

Send_node_pow_cap(Node_id, Node_pow_cap, Status)
IN Node_id Node id to specify the target
IN Node_pow_cap Power cap to set to the designated node
OUT Status List of errors observed during the procedure

Send_node_temp_cap(Node_id, Node_temp_cap, Status)
IN Node_id Node id to specify the target
IN Node_temp_cap Node thermal cap set to the designated node
OUT Status List of errors observed during the procedure

The functions below are used by the node manager to snoop the power/thermal cap request.

Recv_node_pow_cap(Node_pow_cap, Status)
OUT Node_pow_cap Power cap to set to the designated node
OUT Status List of errors observed during the procedure

Recv_node_temp_cap(Node_temp_cap, Statu)
OUT Node_temp_cap Thermal cap to set to the designated node
OUT Status List of errors observed during the procedure

REGALE - 956560 32 05.05.2023



D1.2 REGALE Intermediate Architecture

[Node Manager]
The following interface functions are provided by the node manager to interact with the
system manager, in particular, the SPM.

To System Manager (SPM)
These two functions are used to send the current power/thermal cap information to the
system manager side.

Get_node_pow_cap(Node_id, Node_pow_cap, Status)
IN Node_id id of this node
OUT Node_pow_cap Current node power cap set at this node
OUT Status List of errors observed during the procedure

Get_node_temp_cap(Node_id, Node_temp_cap, Status)
IN Node_id id of this node
OUT Node_temp_cap Current node power cap set at this node
OUT Status List of errors observed during the procedure

The following two functions are used to report the node power or thermal cap range to the
system manager after probing the hardware.

Get_node_pow_cap_range(Node_id, Min_node_pow_cap, Max_node_pow_cap)
IN Node_id id of this node
OUT Min_node_pow_cap Minimum power cap of this node
OUT Max_node_pow_cap Maximum power cap of this node

Get_node_temp_cap_range(Node_id, Min_node_temp_cap, Max_node_temp_cap)
IN Node_id id of this node
OUT Min_sys_temp_cap Minimum temp cap of this node
OUT Max_sys_temp_cap Maximum temp cap of this node

To Hardware Modules
The following interface functions are used to interact with the hardware modules (or low level
software), in particular at the granularity of nodes.

Set_node_pow_cap(Node_pow_cap, Status)
IN Node_pow_cap Node power cap to set at this node
OUT Status List of errors observed during the procedure

Get_node_pow_cap(Node_pow_cap, Status)
OUT Node_pow_cap Current power cap set at this node
OUT Status List of errors observed during the procedure

Get_node_pow_cap_range(Min_node_pow_cap, Max_node_pow_cap)
OUT Min_sys_pow_cap Minimum power cap of this node
OUT Max_sys_pow_cap Maximum power cap of this node

Set_node_temp_cap(Node_temp_cap, Status)

REGALE - 956560 33 05.05.2023



D1.2 REGALE Intermediate Architecture

IN Node_temp_cap Node thermal cap to set at this node
OUT Status List of errors observed during the procedure

Get_node_temp_cap(Node_temp_cap, Status)
OUT Node_temp_cap Current thermal cap set at this node
OUT Status List of errors observed during the procedure

Get_node_temp_cap_range(Min_node_temp_cap, Max_node_temp_cap)
OUT Min_sys_temp_cap Minimum thermal cap of this node
OUT Max_sys_temp_cap Maximum thermal cap of this node

[Monitor]
The following functions are used to set up the monitor configurations, in particular specifying
what to monitor with per-sensor options, such as sampling frequency.

Set_monitor_setups(Monitor_config, Status)
IN Monitor_config This input specifies monitoring configurations, including

the target sensors/monitors, their locations, monitoring
frequency, etc.

OUT Status List of errors observed during the procedure

Get_monitor_setups(Monitor_config, Status)
OUT Monitor_config A list to specify current monitoring configurations,

including the target sensors/monitors, their locations,
monitoring frequency, etc.

OUT Status List of errors observed during the procedure

Monitor DB
The following functions are used to start/stop recording the monitored statistics on the
database. The monitoring targets are specified by the variable Targets, and if not specified,
all the sensors/counters configured in the above monitor setup functions are recorded.

Start_db_recording(Duration, Push_freq, Targets, DB, Status)
IN Duration A variable to specify the duration of recording
IN Push_freq Frequency to push the data to the database
IN Targets A list to specify target sensors/counters to record
IN DB ID to designate the database
OUT Status List of errors observed during the procedure

The following function is used for stop recording.

End_db_recording(Status)
OUT Status List of errors observed during the ending procedure

Dashboard
The dashboard is used for displaying the monitored data to any actors including both human
actors and software components. In particular, the following functions are used to obtain
power, temperature, or any other statistics at a certain timing. The function Get_sys_power()

REGALE - 956560 34 05.05.2023



D1.2 REGALE Intermediate Architecture

returns the system-wide power consumption, which could be the summation of power
consumption of all nodes or based on a dedicated power measurement facility.

Get_sys_pow(Sys_pow, Time, Status)
OUT Sys_pow Current total system power consumption
OUT Time Time stamp of the measurement
OUT Status List of errors observed during the procedure

Get_node_pow(Node_id, Node_pow, Time, Status)
IN Node_id Node id to specify the target
OUT Node_pow Current power consumption at this node
OUT Time Time stamp of the measurement
OUT Status List of errors observed during the procedure

Get_node_temp(Node_id, Node_temp, Time, Status)
IN Node_id Node id to specify the target
OUT Node_temp Current temperature at this node
OUT Time Time stamp of the measurement
OUT Status List of errors observed during the procedure

Get_node_stats(Node_id, Targets, Stats, Time, Status)
IN Node_id Node id to specify the target node
IN Targets A list to specify target sensors/counters belongs to the node
OUT Stats List of statistics provided by the sensors/counters in the node
OUT Time Time stamp of the measurement
OUT Status List of errors observed during the procedure

The following functions are used to start/end periodically obtaining monitored data with a
specified monitoring frequency.

Start_monitoring_node_pow(Node_id, Duration, Sens_freq, Recv_freq, Node_pow, Status)
IN Node_id Node id to specify the target
IN Duration A variable to set monitoring duration
IN Sens_freq A variable to set monitoring frequency
IN Recv_freq A variable to set the frequency of receiving data
OUT Node_pow Time series data of power consumption at this node
OUT Status List of errors observed during the procedure

Start_monitoring_node_temp(Node_id, Duration, Sens_freq, Recv_freq, Node_temp, Status)
IN Node_id Node id to specify the target
IN Duration A variable to set monitoring duration
IN Sens_freq A variable to set monitoring frequency
IN Recv_freq A variable to set the frequency of receiving data
OUT Node_temp Time series data of temperature at this node
OUT Status List of errors observed during the procedure

Start_monitoring_node_stats(Node_id, Duration, Sens_freq, Recv_freq, Targets, Stats,
Status)

IN Node_id Node id to specify the target node

REGALE - 956560 35 05.05.2023



D1.2 REGALE Intermediate Architecture

IN Duration A variable to set monitoring duration
IN Sens_freq A variable to set monitoring frequency
IN Recv_freq A variable to set the frequency of receiving data
IN Targets A list to specify target sensors/counters belongs to the node
OUT Stats A time series data of statistics obtained from the target

sensors/counters in the node
OUT Status List of errors observed during the procedure

End_monitoring_node_pow(Status)
OUT Status List of errors observed during monitoring and the end procedure

End_monitoring_node_temp(Status)
OUT Status List of errors observed during monitoring and the end procedure

End_monitoring_node_stats(Status)
OUT Status List of errors observed during monitoring and the end procedure

Estimator
The estimator inside the monitor tool continuously collects the node statistics and broadcasts
any detected anomalies to any actors including both the human actors and the software
components. The detectable anomalies can differ depending on the implementations and
should be implemented as plugins for the extensibility.

The following function checks anomalies at a certain timing in the target node. It returns
errors if any anomalies are detected. It detects the thermal/power cap violations, and other
anomalies using the statistics collected on the target node.

Get_node_anom(Node_id, Node_pow_cap, Node_temp_cap, Node_pow, Node_temp, Stats,
Status)

IN Node_id Node id to specify the target node
IN Node_pow_cap Current node power cap set at this node
IN Node_temp_cap Current node power cap set at this node
IN Node_pow Time series data of actual power consumption at this node
IN Node_temp Time series data of actual temperature at this node
IN Stats Time series data of statistics obtained from the target

sensors/counters in the node
OUT Status List of anomalies confirmed during the procedure

The following functions are used to continuously detect the anomalies on the target node.
Every time an anomaly is detected, it is listed in the output (Status).

Start_node_anom_monitor(Node_id, Duration, Node_pow_cap, Node_temp_cap, Node_pow,
Node_temp, Stats, Status)

IN Node_id Node id to specify the target node
IN Duration A variable to set monitoring duration
IN Node_pow_cap Current node power cap set at this node
IN Node_temp_cap Current node power cap set at this node
IN Node_pow Time series data of actual power consumption at this node
IN Node_temp Time series data of actual temperature at this node

REGALE - 956560 36 05.05.2023



D1.2 REGALE Intermediate Architecture

IN Stats Time series data of statistics obtained from the target
sensors/counters in the node

OUT Status List of anomalies observed during the monitoring

End_node_anom_monitor(Node_id, Status)
IN Node_id Node id to specify the target node
OUT Status List of errors observed during the procedure

Figure 6: Overview of Architecture and Information Flow for Advanced and More
Advanced Use Cases

5.2. Interface Functions for Advanced Use Cases
In this section, we describe interface functions necessary to realize the advanced use cases.
Figure 6 depicts added interfaces with the entire software architecture.

[System Manager (RJMS)]
The following two functions are utilized to send out the job information to other software
components in order to obtain such as associated profile or estimated performance, power,
or performance (profile-based estimation). The RJMS initiates the trigger, and other
components snoop the information by using the function Recv_job_entities.

Send_job_entities(Job_entities, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

REGALE - 956560 37 05.05.2023



D1.2 REGALE Intermediate Architecture

binary, etc.)
OUT Status List of errors observed during the procedure

Recv_job_entities(Job_entities, Status)
OUT Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
OUT Status List of errors observed during the procedure

[System Manager (SPM)]
The following functions are provided to mainly the RJMS to notify the remaining system
power budget and to receive requests to increase the remaining system power budget.
Based on them, the RJMS makes decisions on job scheduling, i.e., power- and/or
energy-aware job scheduling (SchedOpt).

Get_remain_sys_pow_budget(Remain_sys_pow_budget, Status)
OUT Remain_sys_pow_budget Remaining system power budget
OUT Status List of errors observed during the procedure

Request_sys_pow_budget(Sys_pow_budget, Approval, Status)
OUT Sys_pow_budget Additional power budget request to raise the remaining

system power budget
OUT Approval A variable to tell if the request is approved by the SPM or not
OUT Status List of errors observed during the procedure

The following functions are provided to mainly the Node manager so that it can adaptively set
up the power capping depending on the characteristics of the currently running job. It
requests or returns a certain amount of power budget to the SPM, and it increases or
decreases the node power cap if it is approved by the SPM.

Request_node_pow_budget(Node_pow_budget, Approval, Status)
IN Node_pow_budget Power budget request to increase the node power cap
OUT Approval A variable to tell if the request is approved by the SPM or not
OUT Status List of errors observed during the procedure

Return_node_pow_budget(Node_pow_budget, Approval, Status)
IN Node_pow_budget Returning power budget to decrease the node power

cap
OUT Approval A variable to tell if the power budget is successfully returned to

the SPM or not
OUT Status List of errors observed during the procedure

[Node Manager]
The following functionalities are utilized to realize the module (or component) level power
control inside a node, which are used in particular for power shifting across modules inside a
node, i.e., NodPowShft. These functions should also be exposed to the Job Manager to
conduct the application-level optimizations (AppPerf or AppEtS).

REGALE - 956560 38 05.05.2023



D1.2 REGALE Intermediate Architecture

Set_mod_pow_cap(Module_id, Mod_pow_cap, Status)
IN Module_id Target hardware module in this node
IN Mod_pow_cap Power cap to set at this hardware module
OUT Status List of errors observed during the procedure

Set_mod_temp_cap(Module_id, Mod_temp_cap, Status)
IN Module_id Target hardware module in this node
IN Mod_temp_cap Thermal cap to set at this hardware module
OUT Status List of errors observed during the procedure

Set_mod_freq(Module_id, Mod_freq, Status)
IN Module_id Target hardware module in this node
IN Mod_freq Clock frequency set at this hardware module
OUT Status List of errors observed during the procedure

Get_mod_pow_cap(Module_id, Mod_pow_cap, Status)
IN Module_id Target hardware module in this node
OUT Mod_pow_cap Current power cap set at this hardware module
OUT Status List of errors observed during the procedure

Get_mod_pow_cap_range(Module_id, Min_node_pow_cap, Max_node_pow_cap)
IN Module_id Target hardware module in this node
OUT Min_sys_pow_cap Minimum power cap of this node
OUT Max_sys_pow_cap Maximum power cap of this node

Get_mod_temp_cap_range(Module_id, Min_node_temp_cap, Max_node_temp_cap)
IN Module_id Target hardware module in this node
OUT Min_sys_temp_cap Minimum thermal cap of this node
OUT Max_sys_temp_cap Maximum thermal cap of this node

Get_mod_avail_freq(Module_id, Freq_list)
IN Module_id Target hardware module in this node
OUT Freq_list List of clock frequency available at this module

[Monitor]
The following two functions are provided to the RJMS to associate the job information with
the node statistics recorded on the database, i.e., what job is running on a certain node
during a certain period of time. By doing so, profile-driven analyses are applicable.

Record_job_launch(Job_entities, Node_list, Time, DB, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN Node_list List of node IDs the job is launched
IN Time Time stamp of the job launch
IN DB ID to designate the database
IN Status List of errors observed during the procedure

Record_job_retire(Job_entities, Node_list, Time, DB, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

REGALE - 956560 39 05.05.2023



D1.2 REGALE Intermediate Architecture

binary, etc.)
IN Node_list List of node IDs the job was running
IN Time Time stamp of the job retirement
IN DB ID to designate the database
IN Status List of errors observed during the procedure

The following function is utilized in the Signature Handler inside the Monitor tool. It searches
and fetches the most relevant profile to the target job from the database.

Get_profile(Job_entities, DB, Profile, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN DB ID to designate the database
OUT Profile Profile data of a previous run of this job/application (Null if no

relevant profile is found)
OUT Status List of errors observed during the procedure

Then, the following function generates the signature to characterize the job, which is based
on the profile (Profile) obtained with the above function or is calculated using the statistic
acquired at runtime or simply only with the job entities, which depends on the implementation
or the availability of the profile. The interface is used by the Estimator.

Genarate_signature(Job_entities, Dat_src, Signature, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN Dat_src A variable to specify whether use the profiled data or

collected data at runtime
OUT Signature Signature to characterize the job (e.g., a list of parameters to

characterize the job such as compute/memory intensity)
OUT Status List of errors observed during the procedure

The following functions are provided by the Monitor to other components, and internally the
Estimator predicts power/performance/energy of the target by using the profile or runtime
monitoring data specified by Dat_src.

Get_pow_estimation(Job_entities, Res_alloc, Dat_src, Est_pow, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN Res_alloc A set of information to state resource allocations (# of nodes,

power cap, etc.)
IN Dat_src A variable to specify whether use the profiled data (DB) or

collected data at runtime
OUT Est_pow Estimated power consumption
OUT Status List of errors observed during the procedure

Get_perf_estimation(Job_entities, Res_alloc, Source, Est_perf, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN Res_alloc A set of information to state resource allocations (# of nodes,

REGALE - 956560 40 05.05.2023



D1.2 REGALE Intermediate Architecture

power cap, etc.)
IN Dat_src A variable to specify whether use the profiled data (DB) or

collected data at runtime
OUT Est_perf Estimated performance for the job
OUT Status List of errors observed during the procedure

Get_ene_estimation(Job_entities, Res_alloc, Source, Est_ene, Status)
IN Job_entities A set of information associated with the job (job ID, user ID,

binary, etc.)
IN Res_alloc A set of information to state resource allocations (# of nodes,

power cap, etc.)
IN Dat_src A variable to specify whether use the profiled data (DB) or

collected data at runtime
OUT Est_energy Estimated energy for the job
OUT Status List of errors observed during the procedure

5.3. Interfaces and Use Cases

In this section, we describe how the interface/module functions can be applied to support the
implementation of several use cases.

[Basic]
The site administrator firstly checks the range of the system power cap using the function
Get_sys_pow_cap_range() and then sets it up within the range by using
Set_sys_pow_cap(). She/he can also check the current system power cap by using
Get_sys_pow_cap(). Once the SPM receives the power cap change, it internally decides the
node-level power cap (set evenly across nodes) and then sends out the node power cap
value by using Send_node_pow_cap(). Then the node manager receives the power cap by
the function Recv_node_pow_cap() that snoops the change, and then updates the node
power cap. It returns the acknowledgement to tell if it completes properly or not. In case of an
error, the node manager sends the error to the SPM, and the SPM then notifies the error to
the site administrator. To conduct these procedures the following interface functions are also
used: Set_node_pow_cap(); Get_node_pow_cap(); Get_node_pow_cap_range().

[Basic+]
In addition to the entire system power capping, this use case sets up the thermal capping to
all the nodes evenly. The entire procedure is almost same as the power capping except for
controlling temperature, and the following functions are additionally needed:
Get_sys_temp_cap_range(); Set_sys_temp_cap(); Get_sys_temp_cap();
Send_node_temp_cap(); Recv_node_temp_cap(); Set_node_temp_cap();
Get_node_temp_cap(); and Get_node_temp_cap_range().

[Basic++]
This use case provides the anomaly detection functionalities. To this end, it needs to
continuously monitor the system state and notify an error/anomaly if detected. To this end, it
can use the monitoring functions listed in 5.1.1 and check if the power/thermal capping is
working properly. Further, it can use a more sophisticated anomaly detection mechanism

REGALE - 956560 41 05.05.2023



D1.2 REGALE Intermediate Architecture

using the runtime monitoring data or the historical data recorded on the database. The
estimation function is in practice implemented as a plugin for the monitor or other tools.

[SysThru/SysEne]
In addition to the basic functionalities described above, this use case applies an optimization
on node power cap allocations depending on the characteristics of running jobs (e.g.,
compute or memory intensity). We can consider two different approaches here: (1)
profile-driven static and proactive allocations; and (2) dynamic and reactive allocations based
on runtime measurement. For the former, we utilize the profile-related functions:
Send_job_entities(); Recv_job_entities(); Record_job_launch(); Record_job_retire();
Genarate_signature(); Get_profile(); Get_pow_estimation(); Get_perf_estimation();
Get_ene_estimation(). One or more estimation functions are selected from the last three
depending on the objective of the optimization. In addition, to realize the dynamic and
reactive power cap optimization, Request_pow_budget() and Return_pow_budget() are used.

[AppPerf/AppEtS]
These two use cases allow application developers to tune the trade-off between power and
performance. For instance, the clock frequency can be scaled down with a negligible
performance overhead while waiting for the completion of data transfer across nodes, which
can be identified by analyzing the code. To this end, the power/performance setup function,
such as Set_mod_pow_cap(), Set_mod_freq(), and others can be exposed to the developers
while the node manager needs to check if the modification does not violate the node-level
power/thermal capping. Further, they may utilize the profiles of previous runs provided by the
Monitor for the fine tuning purpose.

[NodPowShift]
This use case distributes the power budgets to hardware modules inside a node in order to
maximize/minimize a given objective while keeping the node-level power cap set by the SPM.
To this end, it needs per-module power control interfaces listed above. The exact control
algorithm/mechanism is in practice given by a plugin in the node manager.

[SchedOpt]
This use case co-optimizes the job scheduling and the power budgeting across nodes. To
this end, the RJMS interacts with the SPM to obtain the current system power management
status – the most prominent one is the remaining power budget given by
Get_remain_pow_budget() – and then decides the job launch decisions based on the
profile-based power, performance, or energy estimations provided by Get_pow_estimation(),
Get_perf_estimation(), or Get_ene_estimation(), respectively. The scheduling algorithm can
also be trained by using the historical data stored on the database, using such as
reinforcement learning.

5.4. Discussions

The above architecture and interface descriptions are still in the intermediate status based on
the use cases and their requirements defined in WP1 as well as the current status of
implementations/integrations ongoing in WP3, and thus can be continuously elaborated from
both top-down and bottom-up directions. Further, in the final version, the descriptions will be
more comprehensive by covering sophisticated use cases investigated in WP2 and workflow

REGALE - 956560 42 05.05.2023



D1.2 REGALE Intermediate Architecture

engine paths along with power management. To prove the completeness of the set of
functions, we will provide pseudo codes to realize the use cases while using the functions in
the final version. In WP3, a set of the use cases will be implemented in the same way as the
pseudo codes. Therefore, the real-world evaluations using the integrated software will be a
proof of the correctness of the architecture design here.

There are several missing pieces not included here but mentioned in the previous deliverable
D1.1. One of them is the token accountant that calculates the token consumption, i.e., how
much the site charges for executing a job under power management. In most HPC sites, the
token consumption is usually determined by the number of nodes occupied by the job,
multiplied by the job execution time. In case of application-level power or energy
optimizations (e.g., the AppEtS use case), the site admin should motivate the users to be
green, otherwise most of them would optimize their application to just minimize the time to
solution, even if the job-oriented power/energy optimization use cases are applied. Revisiting
the token management policy is one of the promising solutions for this purpose – if the token
consumption were directly determined by the job power or energy consumption, the users
would care about it. Even though this function is out of scope for our integrations in WP3,
covering the token accounting aspects at the architecture level in WP1 is a promising future
option.

REGALE - 956560 43 05.05.2023



D1.2 REGALE Intermediate Architecture

6. PowerStack Integration
In this section, we first introduce an initial assessment of our software tools to realize the
PowerStack path, i.e., we map them to the architecture components specified in the last
section and discuss the missing pieces in order to support these use cases. We then move
on to the initial integration plan based on this assessment. We then finally introduce the
summary of our intermediate integration status ongoing in WP3, i.e., how these use cases
are converted into several integration instances.

6.1 Tool Assessment for PowerStack

TABLE 9: Candidates for System Manager / Monitor and Current Functionality Support
/ = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need

Moderate/Major Updates, Blank = No (or Almost No) Support
System Manager Monitor

RJMS SPM API/Lib

Sensors Estimator

DB Signa
ture

API/Li
bIn band Out of

band Anomaly Pow/perf

SLURM
/OAR / X / / X / /

DCDB / / / X / / / /

Examon / / / X / / / /

BEO / X X /

EAR X / / X / /

TABLE 9 lists the candidate tools for System Manager and Monitor, and the support for the
key functionalities in the early stage of the project. SLURM and OAR are RJMS tools, and
they support key functionalities including job scheduling and token management. They also
support other functionalities with respect to power management and statistics recording,
however there are some other tools more relevant to these roles. To implement the SchedOpt
use case, a new scheduling plugin needs to be developed. As for the SPM, EAR (EARGM) is
one of the best options because the interaction with SLURM to obtain job information is
already supported in the tool via SLURM plugins/APIs. As for the statistics analysis functions,
several monitoring tools (e.g., DCDB and Examon) already support them, such as ML-based
modelings, and they are extensible and changeable by plugins. These analytics functions can
be extensible and will be useful for a variety of use cases.
As for the monitoring aspect, DCDB and Examon can measure both in-band and out-of-band
sensors periodically (from 0.1Hz up to 100Hz of frequency depending on what we measure)
and are extensible to support any sensors by plugins, including such as those in cooling
facilities. These collected information is recorded with the associated job information on their
database – these tools are also able to interact with SLURM to obtain job information. The
measurement function is accessible by other tools, such as those Node Manager tools, by

REGALE - 956560 44 05.05.2023



D1.2 REGALE Intermediate Architecture

using their APIs. For the above strengths, DCDB and Examon are selected for the
mainstream option of the Monitor module, however the others also can work as the Monitor in
several implementations depending on the use cases.

TABLE 10: Candidates for Node/Job Manager and Current Functionality Support
/ = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need

Moderate/Major Updates, Blank = No (or Almost No) Support

Node Manager Job Manager HW access

Closed
loop ctr

Access to
sys mngr API/Lib Profiling Pow

control API/Lib In-band Out-of-ban
d

SLURM X / / /

PULP ctr / / X

BEO X X / / X

BDPO / X / /

EAR / / / X / /

Countdown X / /

Next, TABLE 10 summarizes the candidates for Node or Job Managers, and the current
support for their key functionalities as well as their in-band or out-of-band hardware
knob/sensor accessibilities. The SLURM node daemon works together with the SLURM
system controller, and there are a variety of API functions to access their information.
Although the default power management support in the node daemon is limited (e.g., no
node-level power shifting support), the tool is useful as an interface to interact with the
system manager. PULP controller is a low-level power controller, works transparently to the
application, user, and system software, currently targeting EPI processors [6]. The tool can
access both in-band and out-of-band sensors and automatically optimizes power
management knobs using model predictive control algorithms under thermal and power
limits. BEO is an out-of-band power monitoring and controlling tool. The supported hardware
is a set of AMD/Intel machines in the Atos catalog because the tool is developed in Atos, with
a particular focus on their products, and a plugin is needed for other systems. It monitors
power consumption using out-of-band sensors and can set the power cap using the in-band
RAPL interface. The tool is going to be improved by implementing the following: setting the
node power/termal capping via Slurm (Basic/Basic+); and sophisticated power control and
anomaly detection mechanisms. BDPO is a job-oriented profile-based power-performance
optimization tool, which optimizes clock frequency to trade-off performance and energy or to
minimize energy (AppEtS use case supported), and can be extensible to cover other
job-oriented use cases. EAR is another job-oriented power-performance monitoring tool. It
transparently optimizes the power management knobs on CPUs and GPUs using the profiles
of previous runs that are automatically detected. The power management policies are
implemented as plugins. The tool currently supports the minimizing energy to solution
(AppEtS) use case, and is extensible to cover other use cases such as AppPerf or
NodPowShft. COUNTDOWN is another tool that enables job-level power/performance
optimizations based on a different focus than others. It tries to minimize the power
consumption while waiting for the completion of an MPI communication, by scaling down the
clock frequency or going into one of the CPU sleep states (C-state). It targets Intel CPUs, but

REGALE - 956560 45 05.05.2023



D1.2 REGALE Intermediate Architecture

is going to support other hardware including GPUs. The tool will reinforce the AppEtS use
case and will open up new research opportunities and use cases, which are going to be
covered in the future deliverables.

6.2 Summary of current integration status
Based on the above tool integration assessment, we determined several integration
scenarios (or instances). Figure 7 depicts the general concept with respect to how we convert
these use cases into the integration scenarios. Each integration scenario supports its own
use cases depending on what functionalities their tools support. In general, the site
administrator can pick one use case suitable for the objective, which is in practice realized by
selecting the associated configuration and plugin. The implementation/integration is
conducted in the WP3, and the more detailed descriptions are provided in the deliverable
D3.1. In addition to this, the WP2 extends/sophisticates the use cases and actual
integrations.

Figure 7: Mapping of Use Cases into Integrations

Integration Scenario #1: Application-aware system power capping

This integration scenario aims at maximizing total system throughput under a power cap. The
system throughput is maximized thanks to the feedback that is manually provided by
end-users to the Job scheduler about the performance behavior of the job or the one that is
automatically computed by the Execution Profile Compute Module (EPCM), which works as a
signature handler. The feedback is then conveyed to the SPM which generates per-job power
limits for each node. In this scenario, the SPM plays the key role in terms of global power
management at the system scale, and in terms of power capping strategies at the job scale.

The relevant use cases and the involved software tools are as follows. As described above,
this scenario is relevant to SysThru, in particular profile-driven proactive power management.
This also covers a more naive Basic use case as it simply distributes the power cap evenly
across nodes.

Relevant use cases Basic, SysThru

REGALE - 956560 46 05.05.2023



D1.2 REGALE Intermediate Architecture

Involved software tools OAR(RJMS), BEO(SPM), ECPM(Sig Handler),
EXAMON/DCDB(Monitor)

To realize this integration scenario, we integrate OAR, BEO, EXAMON/DCDB, and ECPM.
The ECPM is a newly developed external module to enable the signature computation
functionality.

Integration Scenario #2: Application-aware energy optimization under a system power
cap

This integration scenario is complementary to the previous one. As in the previous scenario,
the Job scheduler and the Node manager enforce the power cap. In addition, the Job
manager and the Node manager optimize the power state of the compute resources based
on application demand. The Monitor provides insights to the system administrator on platform
metrics and to the users on job’s efficiency through dashboards.

The relevant use cases and the involved software tools are as follows. This scenario covers
application-level power optimizations (AppThru, AppEne), while following the power
constraint set by the system and node manager.

Relevant use cases AppThru, AppEne

Involved software tools BEO(SPM), EAR/BEO(Node Manager),
EXAMON(Monitor), COUNTDOWN(Job Manager)

To realize this scenario, BEO, EAR, EXAMON, and COUNTDOWN are integrated. In
particular, the COUNTDOWN plays an important role in this scenario by setting the compute
resources into a low power mode while waiting for MPI communications.

Integration Scenario #3: Application-aware power capping with job scheduler support

This integration scenario covers a use case where the RJMS plays an active role in the
power management. In this scenario, the SPM applies the cluster powercap algorithm to
dynamically setting the node powercap based on application characteristics. The RJMS
receives information from the SPM about the system status in terms of power consumption.
Based on this information, the RJMS can take several actions/decisions: It can (1) influence
the scheduling policy, the order of jobs, and job priorities in order to adapt the scheduling to
the system status, and (2) it can force the System Power Manager to reduce the allocated
power of running nodes in order to guarantee some power for new jobs. The following table
lists the relevant use cases and the involved software tools. In addition to SysThru,
NodPowShift is also applicable to this integration scenario thanks to EAR’s multiple device
support.

Relevant use cases Basic, SysThru, SchedOpt, NodPowShft

REGALE - 956560 47 05.05.2023



D1.2 REGALE Intermediate Architecture

Involved software tools OAR(RJMS), EARGM(SPM), EARD(Node Manager),
EAR/Examon/DCDB(Monitor), EARL/COUNTDOWN(Job
Manager)

REGALE - 956560 48 05.05.2023



D1.2 REGALE Intermediate Architecture

7. Evaluation plan
7.1 REGALE Strategic objectives and KPIs
The evaluation plan for REGALE is aligned to the Strategic Objectives of the project as
described in the DoA and summarized in Table 11 together with the relevant KPIs and
targets. The objectives of the project are both quantitative and qualitative. SO1 together with
its subobjectives SO1.1-SO1.4 target specific quantitative metrics relevant to resource
utilization that influence performance, energy efficiency and combined metrics. SO2 is mostly
relevant to the qualitative characteristics (functional requirements) of the REGALE solution
and SO3 is relevant to widening the use of supercomputing resources to more complex, next
generation applications. This document will provide a detailed plan on how to evaluate the
tasks within REGALE that have quantitative KPIs and will also provide initial guidelines on
how to assess the qualitative targets.

Table 11: Summary of REGALE Strategic Objectives and the relevant KPIs

Strategic Objective Baseline KPI Target

SO1 SO1.1: Improved application
performance.

Execution in SoTA HPC
systems

Quantitative:
FLOPS or time
to solution

20%

Pilots before REGALE 2x

SO1.2: Increased system
throughput.

SoTA HPC systems Quantitative:
jobs / hour

30%

SO1.3: Minimization of
performance degradation under
the operation with power
constraints.

SoTA HPC systems Quantitative:
Decrease
throughput
penalty

50% less
penalty

SO1.4: Decreased energy to
solution.

SoTA HPC systems Quantitative:
energy
reduction

10%

SO2 Scalability n/a Quantitative exascale

Platform independence n/a Qualitative n/a

Extensibility n/a Qualitative n/a

SO3 Automatic allocation of resources Traditional HPC
application development /
deployment

Qualitative n/a

Programmability Traditional HPC
application development

n/a

Flexibility Traditional HPC
application deployment

Qualitative n/a

REGALE - 956560 49 05.05.2023



D1.2 REGALE Intermediate Architecture

7.2 Evaluation targets
REGALE includes a number of targets (or tasks) that require quantitative evaluation, these
being the REGALE prototypes, the five pilots and sophistication tasks from WP2. Each of
these targets is analyzed in the next sections.

7.2.1 REGALE prototypes
The prototypes of REGALE (see D3.1) primarily target SO1.3, and secondarily SO1.2 and
SO1.4. They rely on an enhanced architecture that is able to monitor, decide and act
appropriately in order to apply sophisticated power capping. The ultimate goal is to deliver
the benefits of power capping (reduced energy and thermal effects, compliance to the current
state of the power grid) while minimizing its potentially severe effects on application
performance and system throughput. In the next paragraphs we provide: a) an overview of
the current state of the art in energy/power-aware supercomputing systems, b) the value
proposition of REGALE and c) the proposed evaluation scenario that will compare the
relevant state-of-the-art setups with REGALE’s prototypes in order to assess whether the
strategic objectives are met.

State of the art: When setting the goal of exascale computing almost a decade ago, it was
realized that energy consumption and excessive power needs would be the most critical
obstacles to achieving this goal. Technological enhancements have been applied on several
components of the supercomputing ecosystem, most notably at the datacenter and hardware
levels. Regarding supercomputing installations, hot water and free cooling technologies were
promoted [8, 9, 10]. On the hardware side, higher integration densities with more vector and
SIMD units and smarter power controls have already been integrated on modern datacenter
processors [11, 12]. These aforementioned techniques are orthogonal to REGALE’s
objectives, with an important note that our approach heavily relies on the power management
capabilities provided by modern processor technology.

We have now entered a phase where energy efficiency is required not only at the design and
implementation of a supercomputing data center, but also during its operation. A number of
research works has demonstrated the benefits of sophisticated power management [13, 14,
15, 16, 17] and tools to monitor and control power at various levels (node, rack, system) of
the site have been implemented and deployed. The PowerAPI specification defines a set of
abstractions and interfaces between various actors and HPC system components for
power/energy measurement and control, easing the implementation of a software stack for
power management on multiple architectures. The HPC PowerStack working group takes this
effort a step further, fostering the standardization of the power/energy management software
stack for HPC systems, by generalizing node-level hardware/software interfaces.

Based on the aforementioned trend, a number of supercomputing sites have enhanced their
software stack with power monitoring and management tools. EAR
(https://gitlab.bsc.es/ear_team/ear) is the system software for energy management tools
used in SuperMUG-NG (LRZ) since September 2019. SuperMUC-NG
(https://doku.lrz.de/display/PUBLIC/SuperMUC-NG) is a homogeneous system composed of
6480 computational nodes with Intel CPUs. In SuperMUC-NG energy optimization is applied
by default to all the jobs executed. The optimization policy selected is min_time_to_solution
with a default frequency of 2.3GHz (the nominal is 2.7GHz). Jobs executed without energy
optimization are executed at a fixed CPU frequency of 2.3GHz. SuperMUC-NG uses an EAR
cluster powercap strategy called Soft-powercap. This strategy modifies the node powercap
(setting it on or off) depending on the total power consumption. By default, the node

REGALE - 956560 50 05.05.2023

https://gitlab.bsc.es/ear_team/ear
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


D1.2 REGALE Intermediate Architecture

powercap is off but it is enabled in case the total power consumption reaches a certain value.
The node powercap is disabled if the total power consumption is below a lower limit. Energy
accounting is reported for all the jobs and node and cluster monitoring are also implemented
using EAR services. More details can be found here
(https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime).

Quite recently (2021) EAR was also installed in Snellius, the National Dutch supercomputing
center in SURF (https://www.surf.nl/en/dutch-national-supercomputer-snellius). Snellius is a
heterogeneous system with two main partitions, one with AMD Zen2 CPUs and a second one
with Intel CPUs + NVIDIA GPUs. In Snellius EAR takes care of the system monitoring and
job accounting. The EAR library with monitoring or optimization policies has also been
enabled but is not forced to be used by default. According to the current plans. EAR will also
be installed in the next MareNostrum5 system in the Barcelona Supercomputing Center.

As a summary, the current state-of-practice in supercomputing operation includes systems
that a) are completely energy/power-unaware and perform brute-force power capping when
needed, b) have included some form of energy awareness by monitoring and reporting
energy consumption (again with brute-force power-capping) and c) systems that include
some primitive energy/power-awareness and enforce some static energy policies. To the best
of our knowledge there exists no supercomputing center that performs some kind of
sophisticated energy management or power capping.

REGALE value proposition: REGALE designs and implements a prototype system that with
the proper collaboration of various modules (monitors, node managers, job managers,
RJMS) is able to apply sophisticated power capping and reduce its penalty in system
throughput by 50%.

Evaluation scenario: The evaluation scenario in this case involves the comparison of the
achieved throughput (jobs/time unit) in a state-of-the art supercomputer setup with a similar
setup with the REGALE prototype activated under the application of several levels of power
capping. Our goal is to reach the highest possible number of nodes (minimum target: 256
nodes) with the important note that the REGALE prototype requires privileged access, a fact
that limits access to large-scale production systems. In any case, we will maximize efforts to
provide convincing large-scale results either by actual medium/large-scale measurements or
by a combination of these measurements with modeling and simulation results.

7.2.2 REGALE pilots

Pilot 1: Industrial Scale Unsteady Adjoint-based Shape Optimization of Hydraulic
Turbines
State-of-practice: Pilot 1 is dealing with the design/shape optimization of a hydraulic turbine
for minimum pressure pulsations of the flow through the turbine. So far, industries were
dealing with this problem through a trial-and-error procedure, which has an increased cost
(high turn-around time) and may lead to suboptimal solutions. On the other side, academia
has intensively been working on the development of efficient optimization methods to tackle
real-world applications at reasonable wall-clock times. During REGALE, this optimization
problem is carried out using evolutionary algorithm (EA) tools with some noticeable add-ons.
The latter include: a) surrogate evaluation models (metamodel-assisted EA; MAEA) to avoid
"useless" calls to the expensive CFD evaluation software and b) the Principal Component

REGALE - 956560 51 05.05.2023

https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime
https://www.surf.nl/en/dutch-national-supercomputer-snellius


D1.2 REGALE Intermediate Architecture

Analysis (PCA) to tackle the “curse of dimensionality”, i.e. the performance degradation of
EAs in problems with many design variables. Thus, we get real optimal designs (in
accordance with the selected blade shape parameterization and the imposed bounds). Over
and above, the flow solution and, as a consequence, the optimization run become faster due
to the use of a GPU-accelerated CFD software.

Irrespective of the shape optimization itself, the computed performance of hydraulic
machines is certainly affected by the imposed boundary conditions and "feel" uncertainties in
the flow rate, the inlet flow angle etc. The obtained optimal solutions must correspond to
robust designs, which means that they should slightly be affected by any uncertainty in the
boundary conditions etc. This is measured by an Uncertainty Quantification (UQ) technique.
A nice way to perform UQ is by using the non-intrusive variant of the Polynomial Chaos
Expansion (niPCE) method. The PCE requires a series of flow computations in various
geometries (shapes), the results of which are stored and, then, post-processed to compute
the statistical moments of the quantities of interest, for instance the mean value and standard
deviation of the efficiency, the head, etc. In Regale, such UQ studies can be performed
through the Melissa workflow manager using a storage-free approach and with the ‘optimal’
allocation of computational resources for concurrent simulations.

REGALE value proposition: All optimization runs were/are performed on a computational
node with 4 Nvidia A100 GPUs. Comparisons between the standard EA and the PCA-driven
MAEA in terms of the optimization turnaround time and/or the obtained optimized solution(s)
for a given computational budget were made.

Regarding UQ studies, the same computational node is used and comparisons on the
required time and storage to compute the statistical moments with and without the use of
Melissa will be carried out.

Evaluation scenario: The above mentioned activities are expected to reduce the
requirements in a) programming for ‘managing’ (assigning to the available resources) the
various simulations required for UQ studies and the post-processing of the so-stored results
and b) storage of the flow fields. This is extremely beneficial, particularly in large scale
applications.

Pilot 2: In-Transit Workflow for Ubiquitous Sensitivity Scope: Very large scale
Sensitivity Analysis Analysis and MetaModel Training. Application to Infrastructure
Safety.
State-of-practice: Multiple simulation runs (sometimes several thousand) are required to
perform uncertainty quantification studies, complex optimization, data assimilation or recently
for training machine learning metamodels. Current practice consists in running all the
necessary instances with different sets of input parameters, store the results to disk, often
called ensemble data, to later read them back from disk to compute the required statistics.
The amount of storage needed may quickly become overwhelming, with the associated long
read time that makes statistical computing time consuming. To avoid this pitfall, scientists
reduce their study size by running low resolution simulations or down-sampling output data in
space and time. Today terascale and tomorrow exascale machines offer compute capabilities

REGALE - 956560 52 05.05.2023



D1.2 REGALE Intermediate Architecture

that would enable large scale studies ranging from uncertainty quantification to training
metamodels. But they are unfortunately not feasible due to this storage issue.

REGALE value proposition: Novel approaches are required. In situ and in transit
processing emerged as a solution to perform data analysis starting as soon as the results are
available in the memory of the simulation. The goal is to reduce the data to store to disk and
to avoid the time penalty to write and then read back the raw data set as required by the
classical postmortem analysis approach. To our knowledge the only available in transit
solution for dealing with large scale multiple simulation runs is the open-source software
Melissa. In the context of REGALE, UGA and EDF will collaborate to run a petabyte-level
multiple simulations study of an industrial case. EDF will provide the model and parameters
for large-scale CFD simulations using Code_Saturne (https://www.code-saturne.org/).

Evaluation scenario: The simulations will run as a large ensemble and the produced data
will be processed online in two different workflows, using the Melissa framework developed
by EDF and UGA:

● The first workflow will target a direct sensitivity analysis to generate various
ubiquitous statistics, i.e. high-resolution spatio-temporal statistics fields,
including advanced ones like Sobol indices and quantiles.

● The second workflow will first train a deep neural network metamodel on-line
from the data produced by the simulations, still using Melissa.

Pilot 3: Enterprise Risk Assessment
State-of-practice: Through the OLISTIC Enterprise Risk Management Platform, we provide
risk assessment for organisations. This is achieved through a representation model of assets,
their vulnerabilities, and a graph that depicts all applicable asset interconnections. This
assessment is also enriched by collecting and analysing network metadata for detecting
possible issues and utilizing security information from different online sources. Such features
are very demanding in terms of data size and processing capabilities needed. To detect and
calculate the risk of Advanced Persistent Threats (APTs), analysis on low-level traffic
collected from (net-traffic-)agents is required and can be very demanding when the
magnitude of data scales, resulting in high-CPU usages and can be time-consuming for the
retrieval of computed risks. For example, the operation of only one 24-port gigabit router may
generate, under full utilization, approximately 50TB of data on a daily basis. Also, finding all
available paths in a graph can have exponential time complexity, which makes calculations
even more difficult as the topology increases. Hence, high-performance computing can
significantly decrease the time needed to identify threats and to solve the attack paths
enumeration problem, in comparison to existing server setups that cannot easily achieve this
kind of processing.

REGALE value proposition: Utilization of a HPC environment for the network analytics
process for Advanced Persistent Threats and graph calculations, can efficiently lead to higher
performance results. In the context of REGALE we extend the OLISTIC platform accordingly
for retrieval of high-volume traffic in batch-processing manner, to allow the placement of
network-metadata processing workflows to the HPC environment leading to significant
performance gains.
More specifically, the following areas of interest are examined by utilizing the Ryax Platform:

REGALE - 956560 53 05.05.2023



D1.2 REGALE Intermediate Architecture

● Efficient placement of reconfigurable programming modules accordingly to input
parameters indicating the retrieval periods of the data. Thus utilization of a framework
supporting the interchangeability of processing workflows according to our needs.

● Enchantment of system capabilities by placing the workflow modules in applicable
nodes. Making it possible to scale Spark analytics workflows with regard to the
volume of traffic collected and thus increase the consumed/processed data over time.

Evaluation scenario: The main objective in the context of REGALE (using the RYAX
Platform) is the reduction of the response time of the Threat Analytic Models, enabling the
accurate detection of threats. Moreover, a dataset generated containing network metadata of
our servers is used to evaluate the consumption via messaging brokers(Kafka), the Spark
modules responsible for capturing data in a time-window fashion and detection of network
spikes. Such disturbances are forwarded in the alerting mechanism via OLISTIC. By
comparing the workflow deployed by RYAX in an HPC environment to the original, cloud
based approach, we can gain insights into the speedups and the improvements of HPC
acceleration provided by REGALE.

Pilot 4: Complex geomorphometric models executed over Scope: High-precision,
multi-factor models using earth observation data for groundwater estimation and very
large data volumes management
State-of-practice: Geomorphometric models perform a number of operations on Digital
Elevation Maps (DEMs) in order to calculate factors like hydrological flow directions and
water pooling and produce the relevant maps. The construction of a workflow able to produce
high-precision results requires the combination of different actions with significant
computational load, that involve fluid dynamics and thus require Computational Fluid
Dynamics (CFD) methods to be solved. The pre-REGALE implementation of the groundwater
estimation and management service operates over relatively small land areas and uses the
single-threaded implementation of the Open-geomorphometry toolset. While it produces
sufficiently accurate results, its performance can be significantly improved by being able to
handle larger land areas, and - on the usability side, being able to quickly run different
configurations of the service by fine-tuning the execution parameters and customising the
classification settings for different areas.

REGALE value proposition: The aforementioned barriers to provide high-precision
groundwater estimation services can be overcome via the solutions provided by REGALE,
and exploited in the context of agricultural operations, environmental research and policy
making. Specifically, in the context of REGALE, we aim to:

● Increase the capability of the system with respect to the analysis of digital elevation
maps that can be feasibly used as input to the described models
Increase coverage, that is the land area that can be covered in acceptable
computation times

● Optimise workflow execution in terms of data processing, intermediate result
production and transferring and inter-process communication in the context of the
service.

Evaluation scenario: The assessment of the benefits obtained via the usage of REGALE
solutions will focus on two aspects affecting the quality of the system: response times for a

REGALE - 956560 54 05.05.2023



D1.2 REGALE Intermediate Architecture

single workflow, and ability to run multiple workflows with different configurations. On the first
part, the core metric to be used is the time to completion of the workflow. The baseline will be
the time to completion achieved in the execution on a local small-scale server (32 GB of
memory, 16 cores), for maps of three different sizes. For the second part, connected to the
usability of the system, the metric that will be used is the time of configuration, deployment,
and execution of at least 3 different configurations of the service for a given map. The
selection of the map for the second evaluation branch will depend on the results observed for
the first part. A map where the execution time benefits were relatively smaller will be
selected, to better estimate the gains from using RYAX for managing and configuring the
execution of the different workflow configurations.

Pilot 5: Design of car bumper made of carbon nanotube reinforced polymers Scope:
Improve performance of stochastic multiscale reinforced polymers
State-of-the-practice: The goal of this pilot is to design an innovative car bumper made of
carbon nanotube (CNT) reinforced polymers. To achieve this, an optimization problem needs
to be solved, where the goal is to find the optimal weight fraction of CNTs and/or their
orientation (design variables for the problem) within the polymeric matrix that will lead to
enhanced crashworthiness of the part. In addition, the problem is formulated in a stochastic
setting, where the randomness in the material properties and the loading conditions is taken
into account for a more rational design. The solution to this stochastic optimization problem
requires the generation of a large number of instances for the design variables and for each
one, a separate Monte Carlo simulation needs to be performed in order to evaluate the
statistics of the response of the bumper in crash scenarios.

The aforementioned solution framework for this pilot application has been conceptualized but
its implementation has never been attempted before the REGALE project. The reasons for
this are:

● The immense computational requirements for performing massive numbers of model
simulations, with each simulation taking several hours to complete.

● The data storage and processing requirements for computing the statistics of the car
bumper’s response at each time instance of the crash simulation.

REGALE value proposition: The REGALE project offers solutions at multiple levels in order
to overcome the computational barriers associated with this pilot application. In terms of
programmability, the REGALE prototype architecture facilitates the integration of various
modules (e.g. monitors, node managers, job managers) with our in-house code for an
efficient deployment on supercomputers. The REGALE tools will ensure the optimal resource
allocation for our application, while maximizing throughput. In addition, the Melissa workflow
manager provides a means of performing ‘on-the-fly’ computation of statistics for the
problem’s response, thus drastically reducing the storage requirements and the cost for data
processing.

Evaluation scenario: To assess the benefits offered by the REGALE project, we will focus
on two scenarios. For the first scenario, the baseline will be the time to completion achieved
in the execution on a single machine (6xIntel i7x980 CPUs with hyperthreading and an
NVIDIA GTX 580) and we will compare against the time to completion in a supercomputer,
where the REGALE tools are installed. For the second scenario, we will compare the time to

REGALE - 956560 55 05.05.2023



D1.2 REGALE Intermediate Architecture

completion and the storage requirements for the pilot with and without the integration of the
Melissa workflow manager. The KPI in both cases will be the application speedup.

7.2.3 REGALE sophistication
Table 12 summarizes the evaluation plans for the sophistication efforts of WP2.

Table 12: Evaluation plan for WP2 tasks

Task SoTA / baseline Value proposition KPI Target

Multi-node
co-scheduling

SoTA resource
managers with
allocation at node
granularity

Improved throughput with
co-scheduling (allocation
at “half-CPU” granularity)

System
throughput
(jobs/sec)

>15%

GPU
co-scheduling

Allocation at GPU
granularity

Resource partitioning on
heterogeneous/
homogeneous node under
power cap

GPU throughput
(jobs/sec) under
power cap

>30%

Power-aware
scheduling

SoTA batch
schedulers

Power aware scheduling in
OAR

System
throughput
(jobs/sec) under
power cap

>5%

Power/thermal
control

CPU power and
thermal controller
of major vendors.
Intel, ARM SCP,
IBM OCC

Combined thermal and
power control with
application performance
pinning

Application
performance
under node/cpu
power and
thermal cap

>5%

Application-aware
power capping

Intel CPU-centric
nodes or
GPU-centric nodes
with in-band
power-capping
capabilities

Application-aware
power-capping on a
partition of nodes

System
throughput
(jobs/sec)

>15%

Elasticity for Big
Data applications

Big Data
applications
executed on HPC

Elasticity for Big Data/
streaming applications on
HPC systems

Turnaround
time of Big
Data/Spark
jobs

20%

7.3 Available platforms and timeline
Up to the time of the writing of this document, the partners have secured access to the
platforms presented in Table 13. Note that this is not an exhaustive list, it includes systems
available for all REGALE partners. Based on their own facilities or collaborations, partners
may utilize access to other platforms for specific evaluation tasks.

REGALE - 956560 56 05.05.2023



D1.2 REGALE Intermediate Architecture

Table 13: Availability of platforms for REGALE evaluation

Name Node
architecture

Number of
nodes

Access
mode

Appropriate for

ICCS 2x x86 Ice lake 6 root Development platform (e.g.
Pilots 3 ,4)

GRID 5000 2x x86 128 root
time
restrictions
apply

REGALE prototype
Co-scheduling
Power-aware scheduling

Armida ARM + V100 GPU 8 user Development platform
(REGALE prototype)

E4 - Intel 2x Xeon Gold 4 root Development platform
(REGALE prototype)

CoolMUC-2 2x Intel Haswell 812 user Pilot 2

G100 2 x CascadeLake 422 user (with
access to
some power
knobs)

REGALE prototype
Pilot 2

EuroHPC#1 1x Xeon
4x A100

3456 user Pilot 1, pilot 5

EuroHPC#1 2x Intel Sapphire 1536 user Pilot 2

The evaluation plan for REGALE will follow the project’s timing. In particular, we will proceed
as follows:
Q2 2023: Testbed access and software setup
Q3 2023: Initial testing experiments
Q4 2023: Initial results and feedback to development and integration tasks
Q1 2024: Collection of final evaluation results

7.4 Evaluation of qualitative objectives
This deliverable presented an evaluation plan for the tasks within REGALE that aim to reach
the project’s quantitative objectives, in particular SO1 and partially scalability from SO2. For
the sake of completeness, we briefly comment below how we intend to validate the success
of the qualitative objectives and refer to the deliverables that more information is or will be
provided.

SO2: Platform independence. Platform independence will be validated through the
integration of alternative integration scenarios involving different hardware architectures and
components. The REGALE API definition is also expected towards this direction. More
information will be provided in Deliverable D3.3.
SO2: Extensibility. Extensibility is sought by the ease incorporation of new features and
alternative modules. This will be achieved by the REGALE API definition and instantiation.
More information will be provided in Deliverables D3.3 and D5.10.

REGALE - 956560 57 05.05.2023



D1.2 REGALE Intermediate Architecture

SO3: Automatic allocation of resources. Atomic allocation or resources refers to the
integration of the five REGALE pilots with the relevant workflow engines. The results of this
integration are reported in D4.1, D4.2 and will be finalized in D4.3.
SO3: Programmability. This will be qualitatively assessed by the application developers and
pilot users of the Consortium by comparing the features of their application before and after
the optimizations within REGALE. More details will be provided in D4.3.
SO3: Flexibility. This objective will be validated by the ability to execute under lightweight
virtualization within the REGALE-enabled system.

8. Conclusions and Future Directions
In this intermediate deliverable, we sorted out the architecture requirements, the
components/interfaces definition, the mapping to our integrations, and the evaluation plan. To
this end, we first collected the current status of our software tools and formulated possible
PowerStack use cases in a general and incremental manner. Second, we specified the
software requirements for each use case and described the open REGALE architecture with
interfaces, while following the requirements. We then assessed our software tools to realize
the use cases based on the architecture and introduced the current status of our integrations
and evaluation plans. This deliverable is going to be the milestone for any software
implementations to realize power management in HPC systems as well as the pointer to
missing pieces investigated as scientific studies in WP2.

In the final deliverable, we will update the REGALE architecture in accordance with the
lessons learned throughout implementing the use cases in WP3. We assume the integration
experiences would be useful to elaborate the architecture definition. However, this would
require minor modifications and would not change the use case definition, though, because
the use cases and the requirements are the guideline for the actual implementations and
should be independent of them. Improving the architecture descriptions by using an
open/standard form by following the literature [7] will be another good option.

Another direction is generalizing the architecture one step further by unifying the PowerStack
path and the workflow engine paths (Melissa and RYAX). In WP4, our pilot applications will
be integrated with these workflow engines to realize sophisticated simulations such as
automatic parameter sensitivity analyses, simulation surrogates with deep neural networks,
automatic concurrency controls, and so forth. These new paradigms of application
management in HPC would introduce new research opportunities to holistic resource
management in HPC centers, in particular when under a power constraint. For instance, the
system manager might need to be aware of the behaviors of those new types of scientific
simulations for better power budgeting across different jobs, nodes, or components. Another
promising way as an example is implementing a power capping functionality inside of these
workflow engines and coordinating the system manager and the workflow engines to deal
with the power budgets in a sophisticated way via a newly introduced or an extended
interface between them. This could be a new use case, and then we would update the
requirement specifications as well as the architecture accordingly. This work would need an
extensive collaboration across different paths.

Aside from the workflow engine aspects, we will introduce any other research outcomes from
WP2 to the use case specifications and the architecture design. In WP2, we will generally

REGALE - 956560 58 05.05.2023



D1.2 REGALE Intermediate Architecture

investigate various sophisticated resource management techniques to enhance the
state-of-the-arts, all of which would bring us useful insights to elaborate our architecture. As
an example, co-scheduling, i.e., co-locating multiple HPC jobs on a node in a space-sharing
manner would be a great addition. We will explore this direction in terms of both the
theoretical aspects including hardware/software requirements and the actual
implementations. For instance, clarifying the requirements to partition the power budgets
among co-located jobs on the same node at the same time would be a good option for fair
power/energy accounting. As another example, we are investigating ML-based resource
management techniques, which would help with specifying the roles or requirements for
some sub-components in these architecture modules in more detail. Furthermore, covering
different kinds of nodes or facilities in our power management loop is another promising
direction to extend our work. As described in this document, including I/O nodes is one good
option for this because various applications are now I/O bound, and thus dealing with power
budgets across compute and I/O nodes in both system- and application-level would be a
good use case to consider. Covering cooling systems in our power management loop is a
promising direction to explore, though we need a software layer to power cap them, predict
their power consumption, detect anomalies and need to care about the time constant to
converge to the target value. More generally, power budgeting across different kinds of
compute nodes for inter-node heterogeneous HPC systems would be another option to
explore. Furthermore, investigating how we should handle anomaly states at different
granularities including different kinds of hardware would be an interesting research direction.

Finally, in this deliverable we provided an evaluation plan that will guide the evaluation tasks
of REGALE. In particular, we described the baseline for each one of the project targets that
needs to be quantitatively evaluated, set the relevant KPIs and targets and sketched the
evaluation process that needs to be followed in order to assess the success of each of the
targets. A number of evaluation platforms have already been identified and need to be further
refined in the upcoming period of the project.

REGALE - 956560 59 05.05.2023



D1.2 REGALE Intermediate Architecture

References
[1] “The HPC PowerStack.” The HPC PowerStack | HPC PowerStack Seminar Website,
https://hpcpowerstack.github.io/. Accessed 28 November 2021.
[2] “TOP500.” TOP500, https://www.top500.org/lists/top500/2021/11/. Accessed 28
November 2021.
[3] Pandruvada, Srinivas. “Running Average Power Limit – RAPL | 01.org.” Intel Open
Source Technology Center, 6 June 2014,
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl. Accessed 30
November 2021.
[4] “NVIDIA System Management Interface.” NVIDIA Developer,
https://developer.nvidia.com/nvidia-system-management-interface. Accessed 30 November
2021.
[5] Dey, Somdip, et al. "EdgeCoolingMode: An agent based thermal management mechanism
for dvfs enabled heterogeneous mpsocs." 2019 32nd International Conference on VLSI
Design and 2019 18th International Conference on Embedded Systems (VLSID). IEEE,
2019.
[6] “EPI: European Processor Initiative” EPI, https://www.european-processor-initiative.eu/.
Accessed 9 December 2021.
[7] Maiterth, Matthias. A Reference Model for Integrated Energy and Power Management of
HPC Systems. Ludwig-Maximilians-Universität München, 2021.
[8] H. Shoukourian, et al. Analysis of the efficiency characteristics of the first
high-temperature direct liquid-cooled petascale supercomputer and its cooling infrastructure,
JPDC, vol. 107, pp. 87– 100, 2017
[9] C. Conficoni, et al. Integrated energy-aware management of supercomputer hybrid
cooling systems, IEEE Transactions on Industrial Informatics,vol. 12, no. 4, pp. 1299–1311,
Aug 2016.
[10] C. Conficoni, et al. Hpc cooling: A flexible modelling tool for effective design and
management, IEEE Transactions on Sustainable Computing, pp. 1–1, 2018.
[11] J. Dongarra, et al. Top500 supercomputer sites, https://www.top500.org/lists, 2019,
accessed 29 March 2019.
[12] W.-c. Feng and K. Cameron, The green500 list: Encouraging sustainable
supercomputing, vol. 40, no. 12. IEEE, 2007.
[13] F. Fraternali, et al. Quantifying the impact of variability and heterogeneity on the energy
efficiency for a next-generation ultra-green supercomputer, IEEE TPDS, vol. 29, no. 7,
pp.1575–1588, 2018.
[14] A. Auweter, et al. A case study of energy aware scheduling on supermuc, in
Supercomputing, J. M. Kunkel,T. Ludwig, and H. W. Meuer, Eds.Cham: Springer, 2014, pp.
394–409.
[15] C. Hsu and W. Feng, A power-aware run-time system for high-performance computing,
SC ’05.
[16] A. Borghesi, et al. Scheduling-based power capping in high performance computing
systems, Sustainable Computing: Informatics and Systems, vol. 19, pp. 1–13, 2018.
[17] S. Bhalachandra, et al. An adaptive core-specific runtime for energy efficiency,
IPDPS’17, pp. 947–956.

REGALE - 956560 60 05.05.2023


