
REGALE architecture and REGALE library

Andrea Bartolini (UNIBO),
Giacomo Madella (UNIBO), Federico Tesser (CINECA),
Julita Corbalan (BSC), Lluis Alonso (BSC), Eishi Arima (TUM)

REGALE Architecture
● Architecture
● Agents/tools

6

REGALE project

REGALE power management
Architecture

REGALE project

REGALE power management
Architecture Orchestrates the

execution of jobs

REGALE project

REGALE power management
Architecture

System Job scheduler
● Controls the job queue, implements the scheduling

policy and resource selection, [potentially] decides the
job/cluster powercap

System power manager
● Implements the job/cluster powercap. Works with the

job scheduler. [Uses system predictor].

REGALE project

REGALE power management
Architecture

Receives data from all the
other services in the systems
Provides Dasboards,
Estimators and Query
interface to historical data

REGALE project

REGALE power management
Architecture

Optimizes resources (including
power) allocated to the job.
Optimizes energy.
Provides power/performance
hints.

REGALE project

REGALE power management
Architecture

Enforces node powercap and
power/performance states with
HW knobs and uses
power/performance hints for a
better resource management.

REGALE project

REGALE agents

Workflow engine

System Job schedulerSystem power
manager

Node
mgr

M
on

ito
r

Job
mgr

Run
workflow

Node
mgr

Job
mgr

Node
mgr

Job
mgr

Node
mgr

Job
mgr

Start jobs Set
power

Get data
from all
actors

Predictor

Provide hints
Re-allocate
power
Change freq.

Get job status
Get power
Get hints

Provides
”estimators” to all
actors

Orchestrate
workflow

Submit job

Set policy
Set limits

Provides
historical
“memory”

REGALE project

REGALE tools

M
on

ito
r

Run
workflow

Predictor

Submit job

BeBiDa

BEO

Examon

BEO

Countdown

ControlPULP

Countdown

REGALE project

REGALE API

M
on

ito
r

Run
workflow

Predictor

Submit job

BeBiDa

BEO

Examon

BEO

Countdown

PulpControl
ler

Countdown

REGALE API

REGALE Library ● Objective & structure
● REGALE Core
● REGALE Client/Server
● REGALE Agents

19

Regale Library goal
• No more specific tricks/hacks/interfaces between just two tools.
• Being able to change, in a future, an implementation for a specific Regale

entity, without any issues for the others.
• No multiple invocations for the "same" functions.

REGALE project 25

REGALE Library - a bird's-eye view

REGALE project 26

REGALE Library - a bird's-eye view

Provides the
distributed

pub/sub transport

REGALE project 27

REGALE Library - a bird's-eye view

Provides the
distributed

pub/sub transport

Provides basic
functionalities to

abstract DDS
complexities

REGALE project 28

REGALE Library - a bird's-eye view

Provides the
distributed

pub/sub transport

Provides basic
functionalities to

abstract DDS
complexities

Provides API for
the integration of

REGALE core
functionalities into

the REGALE
Agents

REGALE project 29

REGALE Library - a bird's-eye view

Provides the
distributed

pub/sub transport

Provides basic
functionalities to

abstract DDS
complexities

Provides API for
the integration of

REGALE core
functionalities into

the REGALE
Agents

Provides dummy
REGALE agents
for testing and

integration

REGALE tools
integrated with

REGALE library

REGALE project 30

REGALE Library - DDS basics

DDS (Data Distribution
Service) – a middleware
standard used for real-time
systems (e.g., robotics)

• Publish-subscribe pattern
using broadcasting; Define
namespace & services

• For dependability, high-
performance,
interoperability, real-time,
scalability, etc.

• Several implementations
are available; currently built
on top of FAST DDS

• To be verified and validated
in production HPC
environment

REGALE project

Support different
domains with
multiple
participants

31

REGALE Library - DDS basics

REGALE project 32

REGALE Library - DDS basics

Topics: allow
support for different
distributed
communication
channel

REGALE project 33

REGALE Library - DDS basics

Partitions: allow
hierarchical
communication

REGALE project 34

Allow
communication
through different
protocols

REGALE Library - DDS basics

REGALE Library ● Objective & structure
● REGALE Core
● REGALE Client/Server
● REGALE Agents

35

REGALE project 36

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

REGALE project 39

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

Base class
- QOS
- Topic
- Get/Set Dynamically Data types
- Get transport

Data Types can be stored in an xml
file, and parsed dynamically

REGALE project 41

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

Base class
- QOS
- Topic
- Get/Set Dynamically Data types
- Get transport

Different configurations can be set in a
different xml profiles file. Among these,

we can find transport setups.

REGALE project 42

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

Derived class
- Publisher QOS
- Creates Data Writer to actually

publish data on specific
Topic/Partition pair

REGALE project 43

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

Derived class
- Subscriber QOS
- Creates Data Reader to receive

actual data, if they are present.
- Same duo Topic/Partition of the

matching publisher

REGALE project 45

REGALE Library - CORE

RegaleObject.cpp

RegalePublisher.cpp RegaleSubscriber.cpp

regale.cpp

C/C++ Bridge
- Regale_init
- Regale_malloc/dealloc
- Regale_create_publisher
- Regale_create_subscriber
- Regale_publish
- Regale_delete
- Regale_finalize

libregale_core.so

REGALE project 46

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

REGALE project 47

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

It is the method used to initialize a
RegaleStruct, which is the base
element for the dynamic data
getting/setting

REGALE project 48

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

It is the method used to initalize a
RegaleStruct, which is the base
element for the dynamic data
getting/setting

REGALE project 49

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

Functions to allocate/deallocate
memory, for the total amount of
RegaleStructs needed for the
data type of a specific message

REGALE project 51

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber
Methods to actual create derived objects
RegalePublisher and RegaleSubscriber.
They need:

- a topic
- a partition
- paths to the profiles and data types

xml files to be used, for the
messages’ exchange

REGALE project 52

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

Methods to actual publish the values for a
specific data type.

No symmetrical method for the subscriber,
because it asynchronously “listen” for
incoming messages

REGALE project 53

REGALE Library - CORE

regale_malloc/dealloc

regale_finalize

regale_create_publisherregale_init

regale_deleteregale_publishregale_create_subscriber

Destroy RegaleObjects previously
created

REGALE Library ● Objective & structure
● REGALE Core
● REGALE Client/Server
● REGALE Agents

54

REGALE project 56

REGALE Library Client/Server

Client libraries Server libraries

regale_xxx.h
libregale_core.so

libregale_xxx_client.so

regale_xxx_server.h
regale_xxx_server_impl.h

libregale_core.so
libregale_xxx_server.so

No further work required, only linking and
using the desired functions.

The tools implementing the server
components MUST implement the

functions defined in
regale_xxx_server_impl.h.

Each REGALE agent has a server and a client library
● Internally uses regale_core.so
● To be compatible with the REGALE library, it only needs to include the relevant parts (e.g. the

Monitor server for a monitor)
○ The tool which creates the server MUST implement the functions defined by the spec
○ The tool that uses the client only needs to call the API functions

REGALE project 58

REGALE Library Client/Server

Client library

regale_xxx_init

Specific functions

regale_xxx_finalize

Creates the publisher/subscriber pairs necessary for the
communication and returns a regale_handler.

● One may specify a partition here (for example, the
hostname of a compute node) to communicate only with
the servers belonging to that partition.

● Wildcards (*) are also available.

Client Library main components

REGALE project 59

REGALE Library Client/Server

Client library

regale_xxx_init

Specific functions

regale_xxx_finalize

Functionality of the particular agent.
● For example, retrieving the current power

consumption of Node Manager servers, or sending
telemetry to Monitor servers.

● These functions use the handlers created by the init
function to filter who receive the messages.

Client Library main components

REGALE project 60

REGALE Library Client/Server
Client Library main components

Client library

regale_xxx_init

Specific functions

regale_xxx_finalize Given a handler created by the init function, destroys the
publisher/subscriber pairs and cleans up.

REGALE project 61

REGALE Library Client/Server

Server library

regale_xxx_service_init

Server implementation
functions

regale_xxx_service_finalize

Creates the publisher/subscriber pairs necessary for the
communication.

Partition can be specified (for example, the hostname of a
compute node) so that clients may use it as filter.

Server Library main components

REGALE project 62

REGALE Library Client/Server

Server library

regale_xxx_service_init

Server implementation
functions

regale_xxx_service_finalize

Server Library main components

These are a set of functions that will be called when
requests are received. They are defined by the spec.

Some may require that certain structures are filled (like
GET_INFO requests) to be return to the clients, while
others are sending information to be processed (like
telemetry data being sent to the Monitor).

The list of functions varies by the component, and can be
found in regale_xxx_server_impl.h

REGALE project 63

REGALE Library Client/Server

Server library

regale_xxx_service_init

Server implementation
functions

regale_xxx_service_finalize

Server Library main components

Deletes the publisher/subscriber pairs and stops
processing messages from the clients.

REGALE Library ● Objective & structure
● REGALE Core
● REGALE Client/Server
● REGALE Agents

64

REGALE project 65

REGALE Agent - Monitor

Bridge DDS-MQTT

DDS_subscri
ber[“topicX”]

Examon Monitor

REGALE
Monitor server

functions

MQTT

MQTT send Interface

Node
Manager

REGALE Monitor’s client API

Job
Manager …

DDS messages

…

Bridge can act as a Monitor
Server, in order to retrieve
Monitor-directed messages

REGALE project 66

REGALE Agent - Monitor

Bridge DDS-MQTT

DDS_subscri
ber[“topicX”]

Monitor

REGALE
Monitor server

functions

MQTT

MQTT send Interface

Node
Manager

REGALE Monitor’s client API

Job
Manager …

DDS messages

…

Or listen to “bare DDS
messages” on different Topics

REGALE project 67

REGALE Agent - Node Manager

Node Manager

System Power ManagerJob Manager

REGALE NM server functions

REGALE NM’s client API REGALE NM’s client API

Same API

Get current configuration
Set new configuration

Monitor

REGALE Monitor’s client API

REGALE Monitor server functions

Report node telemetry

Get power consumption
Set power limit

REGALE project 68

REGALE Library - Job Manager - Node Manager - Monitor

COUNTDOWNEAR BRIDGE + EXAMON

REGALE project 69

COUNTDOWN

Node Manager client

regale_node_manager_init

Monitoring client

regale_monitor_init

EAR

Node Manager server

regale_node_manager_service_init

BRIDGE + EXAMON

Monitoring server

regale_monitor_service_init

Initializations create and pair
publishers and subscribers

REGALE Library - Job Manager - Node Manager - Monitor

REGALE project 70

COUNTDOWN

Node Manager client

regale_nm_get_info

Monitoring client

regale_report_job_telemetry

EAR

Node Manager server

BRIDGE + EXAMON

Monitoring server

Initializations create and pair
publishers and subscribers

Client APIs are called, to meet the
REGALE’s standard to exchange

messages

REGALE Library - Job Manager - Node Manager - Monitor

REGALE project 71

COUNTDOWN

Node Manager client

Monitoring client

EAR

Node Manager server

regale_nm_get_info_server

BRIDGE + EXAMON

Monitoring server

regale_report _job_telemetry_server

Initializations create and pair
publishers and subscribers

Server side must define some
“interfaces”, to specifically decide
what the callback will do, with the
received information. Again, this
respect the REGALE’s standard

REGALE Library - Job Manager - Node Manager - Monitor
Client APIs are called, to meet the
REGALE’s standard to exchange

messages

REGALE project

Large scale computing infrastructure sustainability is of primary importance for today society. Power
management is a key ingredient for it.

The REGALE Project has embraced the complexity and fragmentation of power management in
large-scale HPC system installation following the HPC PowerStack early results.

The REGALE project during its implementation has studied, conceptualized and implemented an
holistic power management view integrating the different power management components features.

The REGALE library is open, modular, extensible and scalable and aims to provide the substrate for
power management agents interoperability. Currently a working prototype has been built and
integrated with relevant power management software components. We are currently validating the
results.

72

Conclusions

REGALE project

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 956560. The JU receives support from the European Union’s Horizon 2020 research and innovation programme

and Greece, Germany, France, Spain, Austria, Italy.

Funding

