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Executive Summary

This deliverable document reports the current status of WP1 (work package on requirements,
architecture and evaluation) in the REGALE project, i.e., the requirement specifications (Task
1.1), the initial software architecture (Task 1.3), and the initial evaluation plan (Task 1.2/1.4). The
ultimate goal of REGALE is to pave the way of next generation HPC applications to exascale
systems, and to accomplish this we define an open architecture (WP1), build a prototype system
(WP3) and incorporate in this system appropriate sophistication (WP2) in order to equip
supercomputing systems with the mechanisms and policies for effective resource utilization and
execution of complex applications (WP4). We are conducting these studies in a cooperative
manner, i.e., the architecture and the prototype are co-designed/conceptualized considering
both state-of-the-art and next generation HPC applications, maximizing in this way its
applicability. As a first step, this document describes the architecture requirements for a variety
of PowerStack use cases (Section 4) and the initial status of the software architecture for
PowerStack path (Section 5.1) and workflow engine path (Section 5.2), which will be used as
blueprints for the other work packages, e.g., the software prototyping in WP3 (Section 6).
Further, this document also covers the current status for the evaluation plan (Section 7) and
then concludes with next steps towards updating the open architecture based on the feedback
from the other work packages as well as the integration of the different paths in WP1.
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1. Introduction

An exascale supercomputer will not be “yet another big machine”. With a cost of hundreds of
million euros, power consumption in the order of tens of megawatts and a lifetime that reaches a
decade at most, judicious management of those resources is of utmost importance. Turning our
attention to the critical aspect of power consumption, the current leader in the TOP500 list as of
Nov. 2021 [2], has a few hundred-petascale computational capacity and a power consumption
that can reach almost 30MW. Even with the highest technological advancements, an exascale
machine is expected to well exceed the 20MW threshold that was initially set as the upper
bound of power consumption for exascale computing, and could be even more than 30MW. A
machine of this size will not be able to operate at full power consumption, and energy
consumption will become a primary concern to keep its environmental footprint and operational
costs at acceptable levels without neglecting its ultimate purpose: to equip highly critical
applications with the computational capacity to solve extremely resource hungry problems.

Focusing on the application side, achieving scalable performance and high system throughput
has always been a cumbersome task. To make things even more challenging, next-generation
HPC applications can no longer be considered as computation/communication-intensive,
monolithic blocks with minimal and infrequent I/O requirements. The revolution of Big Data and
Machine Learning, the emerging Edge Computing and IoT, with the scale of modern HPC
systems and cloud datacentres, are rapidly changing the way we solve scientific problems.
Novel computational patterns are rapidly evolving, where the solution of a problem may require
a workflow of diverse tasks, performing simulations, data ingestion, data analytics, machine
learning, visualization, uncertainty quantification, verification, computational steering and more.
Existing solutions may render the execution of such applications in a large-scale supercomputer
either impossible, or extremely suboptimal in terms of time to solution and user cost, due to the
absence or inefficiencies of appropriate methods to compose, deploy and execute workflows,
and/or due to their extreme requirements in I/O resources, which cannot be met by the system
capacity without holistic and sophisticated deployments.

The ultimate goal of REGALE is to pave the way of next generation HPC applications to
exascale systems. To accomplish this, we define an open architecture, build a prototype system
and incorporate in this system appropriate sophistication in order to equip supercomputing
systems with the mechanisms and policies for effective resource utilization and execution of
complex applications. The REGALE architecture and prototype will be co-designed considering
both state-of-the-art and next generation HPC applications, maximizing in this way its
applicability.

REGALE takes an approach that considers two interacting paths: The first path is largely
motivated by the PowerStack initiative [1] that primarily targets multi-criteria operation of
supercomputing services with a strong focus on power and energy efficiency. The second path
focuses on the requirements posed by non-conventional, workflow-based applications and their
integration with an appropriate workflow engine, with a goal to achieve easy and flexible use of
supercomputing resources at large scales.
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This deliverable sets the critical stepping stone for the implementation of REGALE: It starts from
the project’s strategic objectives (Section 2), our strawman architecture and software tools
(Section 3), and analyzes a set of relevant use cases together with their requirements (Section
4). These are then used to define the REGALE architecture (Section 5) instantiated with the use
of the various modules brought in REGALE and evolved throughout the project by the partners
(Section 6). To validate the efficacy of the REGALE approach and the alignment with the already
set objectives and KPI’s, we present our evaluation strategy in Section 7. Finally, Section 8
concludes this initial work and introduces several future research directions.
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2. Project Strategic Objectives

REGALE Strategic Objectives: REGALE envisions to meet the Strategic Objectives (SO)
presented below.

Strategic Objective 1 (SO1): Effective utilization of resources. This strategic objective will
consider the huge amount of resources available in exascale class machines and the resource
footprints of both traditional and emerging applications. The improvement in resource utilization
will indicatively translate to a combination of:

● SO1.1: Improved application performance. Better allocation of resources that
considers the exact application footprint, data requirements, control and data flows will
drastically improve performance for critical applications. This is especially the case for
the next generation, workflow-based applications where one of the major problems is the
highly suboptimal use of resources, leading to disappointing performance, inability to
scale, misuse of resources and consequent over charges of end users.

● SO1.2: Increased system throughput. By taking global and elaborate decisions
considering the entire mix of workloads to be executed in the supercomputer, we will be
able to significantly raise the system throughput, servicing more applications per day and
ultimately increasing user satisfaction and system impact.

● SO1.3: Minimized performance degradation under the opower constraints. Power
capping is a common mechanism to align supercomputer consumption with the power
availability and charges of the supplier. In REGALE we will replace the current
brute-force, performance-oblivious strategies by a set of sophisticated policies for
dynamic adaptation to power envelopes without compromising application performance
and system throughput.

● SO1.4: Decreased energy to solution. REGALE will support the operation of a
supercomputer with energy consumption as a first class citizen. In this case we will
incorporate mechanisms and policies to minimize energy to solution if this is promoted
by the operation policy.

Strategic Objective 2 (SO2): Broad applicability. This strategic objective will guide our
architecture design and prototyping towards maximizing openness, platform independence,
scalability, modularity, extensibility and simplicity, allowing for its implementation with various
software modules, on any supercomputing platform, for the realization of SO1. In particular, this
will be achieved through compatibility to relevant specifications and standards.

To assess if this SO is met, we will validate the existence of the following key features:
● Scalability: The REGALE system should be able to operate in exascale setups and

beyond. To assess this objective we will perform experimental results and simulation,
and we will also extrapolate our results to larger system scales. Our goal is for our
prototype system to have minimal overheads across all scales.

● Platform independence: The REGALE system should be able to operate across all
major architectures of large supercomputing facilities and be free of any vendor lock-in.
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This will be validated by our integration process where we will provide full integration
scenarios with at least two vendor-specific solutions and will provide indicative solutions
for all major modules of the HPC ecosystem.

● Extensibility: The REGALE system should be extensible to any new feature or
component that aligns to its open architecture. This will be validated through our
implementation process. We will build the REGALE system with gradual incorporation of
features, starting from the critical ones and adding sophistication and complexity within
the various versions in the development and integration process.

Strategic Objective 3 (SO3): Easy and flexible use of supercomputing services. Widening
the use of advanced computational and data facilities beyond the highly skilled traditional HPC
users requires significant efforts on the side of the centers. In REGALE we will release the
developers and users of complex applications that originate from new industrial use cases from
the extremely cumbersome task to finetune the execution of their application on an exascale
system. Moreover, we will equip them with an easy-to-use set of tools to facilitate the
development and deployment of their applications to exascale systems.

To assess if this SO is met, we will validate the existence of the following key features:
● Automatic allocation of resources: Users of complex applications should not bother

with the way their application is distributed on an exascale system. We will compare the
process of requesting resources between the current state-of-the-art systems and
applications and the REGALE solution.

● Programmability: Application developers should find the REGALE architecture and
system easily accessible to develop and deploy their code(s). This will be qualitatively
assessed by the application developers and pilot users of the consortium by comparing
the features of their application before and after the optimizations within REGALE.

● Flexibility: Applications should be able to execute under lightweight virtualization within
the REGALE- enabled system.

The architecture, integration and evaluation plans that are presented in this deliverable are
driven by REGALE’s strategic objectives.
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3. Strawman Architecture and Software Tools

In this section, we first introduce the REGALE strawman architecture and its components/actors.
We second summarize the software tools to be used in this project. We finally introduce our
implementation paths that integrate the tools.

Figure 1: REGALE Strawman Architecture

Figure 1 illustrates the general strawman architecture. The descriptions of key actors and
software components are as follows.

Human actors:
A. Site administrator: Configures the site-level policy appropriately prioritizing between

power/energy/performance and quantifies the relevant constraints. The policy can be
changed according to the current needs with respect to objectives and/or constraints.

B. User: This actor submits a job for execution to the system, requests resources for her
job and optionally provides information on the performance behaviour of her application.

C. Developer: This actor develops, optimizes and instruments her application with regard
to relevant objectives to facilitate further optimization by the system and collection of
profiling information.
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System modules:
A. System manager: The system manager receives as input a set of jobs to be scheduled

within the system and indicatively decides upon when to schedule each job, to which
specific compute nodes to map it, and under which power budget or setting. For this, it
constantly monitors and records power and energy telemetry data, and controls power
budgets/settings and/or user fairness.

B. Job manager: The job manager performs optimizations considering the performance
behaviour of each application, its fine-grained resource footprint, its phases and any
interactions/dependencies dictated by the entire workflow it participates in. It manages
the control knobs in all compute nodes participating in the job and optimizes them during
runtime to achieve the desired power consumption (at maximum possible performance),
efficiency, or other settings. Additionally, it scalably aggregates application
profile/telemetry data from each node servicing the given job through the system
manager.

C. Node manager: The node manager provides access to node-level hardware controls
and monitors. Moreover, the node manager implements processor level and node level
power management policies, as well as preserving the power integrity, security and
safety of the node. For this reason, all the power management requests coming from the
software stack are mediated by the node management.

D. Workflow engine: The workflow engine analyses the dependencies and resource
requirements of each workflow and decides on how to break the workflow into specific
jobs that will be fed to the system manager. Modern workflows may be composed of
hybrid Big Data, Machine Learning and HPC jobs; hence a key role for the workflow
engine is to provide the right interfaces and abstractions in order to enable the
expression and deployment of combined Big Data, HPC jobs. The distribution of jobs
can vary depending on the objective goals defined by the optimization strategy.

E. Monitor: The monitor is responsible for collecting in-band and out-of-band data for
performance, resource utilization, status, power and energy. The monitor operates
continuously without interfering with execution, with minimal footprint, and collects,
aggregates, records, and analyses various metrics, and pushes necessary real-time data
to the system manager, the node manager and the job manager.

To realize the software architecture, we integrate the following tools. TABLE 1 represents the
general classifications of these tools into the system modules.

● SLURM is an open-source resource manager, with scheduling plugins, used by many
supercomputers worldwide. While SLURM’s main functionality is to allocate resources,
start, execute and monitor jobs, it is extensible with plugins for scheduling, monitoring
and accounting, and sophisticated resource allocation and job prioritization optimization
methods. SLURM is designed to be highly-scalable, fault-tolerant, and portable.
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● DCDB is a scalable monitoring framework for the acquisition of both in-band1 and
out-of-band2 sensor data in HPC systems. DCDB follows a modular software
architecture, allowing for the implementation of different plugins supporting a variety of
data sources and protocols, and is currently deployed on BADW-LRZ’s facilities. DCDB
has been further extended with Wintermute, a data analytics framework, supporting
online and on-demand data analysis.

● BEO (Bull Energy optimizer) is a tool for monitoring the power, energy, temperature
and performance of the whole cluster infrastructure. Based on out-of-band monitoring
through standard protocols (IPMI, SNMP, Redfish) and in-band monitoring (BDPO) and
on a consolidated and distributed database, BEO can provide energy related insights
without instrumentation. Connected with a system manager, BEO can provide detailed
accounting metrics for a given job. BEO can be easily extended to support any additional
hardware. BEO contains secured (OpenID connect, LDAP compatible) interfaces: CLI,
Rest API (OpenAPI specification) and customizable web user interface intended for
system administrators and end users.

● BDPO (Bull Dynamic Power Optimizer) is a job-oriented energy optimization
tool/runtime system. It is integrated with SLURM and exposes BEO APIs. BDPO collects
fine-grain performance-centric metrics, e.g., IPC and memory activity. It also performs
precise in-band monitoring for efficiency metrics, like CPU energy consumption, in order
to extend job data analysis provided by BEO. It offers an offline analysis mode, where
applications are broken up into multiple representative patterns, highlighting the various
recurring computations. These patterns are classified in terms of their energy footprint on
the target hardware. BDPO can also dynamically adapt the CPU frequency based on
these metrics in order to optimize the ratio performance/energy to solution.

● OAR (https://oar.imag.fr) is a versatile resource and task manager for HPC platforms,
and other computing infrastructures. It is an European open source tool. OAR modular
architecture makes it very flexible for integrating other tools or adding new scheduling
policies.

● Melissa (https://melissa-sa.github.io/) is a file avoiding, adaptive, fault tolerant and
elastic framework, enabling very efficient executions of ensemble runs on large scale
supercomputers. The amount of storage needed for ensemble runs can quickly become
overwhelming, with the associated long read time that makes statistic computing time
consuming. To avoid this pitfall, scientists reduce their study size by running low
resolution simulations or down-sampling output data in space and time. Melissa
bypasses this limitation by avoiding intermediate file storage. Melissa processes the data
in transit enabling very large scale sensitivity analysis. Outputs are never stored on disc.
This enable compute oblivious statistics maps on every mesh element for every timestep

2 Out-of-band [8]: Data potentially coming from any available source in the system, including historical or
asynchronous facility data. For techniques using this type of data, operation often has to be at coarse
scale (e.g., in the order of minutes) and must be explicitly synchronized (e.g., through time-stamps), but
latency and overhead are less of a concern. In this document, we classify the sensing/actuating via the
board base controller into out-of-band.

1 In-band [8]: Data sampled and consumed within a specific component in an HPC system, usually a
compute node. Techniques using such data sources often operate at a fine temporal scale (i.e., greater
than 1Hz) and require low analysis overhead and latency in gathering data.
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on a full scale study. Experiments have demonstrated Melissa scalability up to 29,000
cores and processing of 273 TB on-line data.

● RYAX is a workflow management system for data analytics. It enables workflow
composition and orchestration on hybrid distributed infrastructures such as HPC systems
or the Cloud. It is built on top of Kubernetes inheriting its interoperability, flexibility,
fault-tolerance and powerful declarative configuration. RYAX proposes a new DSL
language that facilitates the definition of workflows. These architectural choices enable
efficient stream processing, even though batch processing is possible, and support
deploying on hybrid distributed environments. Task placement is delegated on the
Kubernetes scheduler whose modularity allows us to develop different types of
scheduling algorithms. RYAX facilitates the convergence of HPC/AI since it enables the
execution of hybrid workflows through integration/communication with the dedicated
HPC or Big Data resource managers. Kubernetes currently supports different types of
containers platforms (Singularity, Docker) and this is maintained by RYAX.

● BeBiDa (https://gitlab.inria.fr/mmercier/bebida) is a resource management tool that
enables the collocation of HPC and Big Data workloads leveraging the idle resources of
an HPC system. The technique is seamless for end-users, it demands no change on the
underlying resource management HPC system and is based on the simple job
prolog/epilog mechanism, which is typical for HPC resource managers. The technique
leverages Big Data frameworks resilience and elasticity by using a dynamic resource
pool, and minimizes interference with HPC applications, since the Big Data applications
are executed as low-priority best-effort jobs that get removed when an(other) HPC job
needs the resources. BeBiDa ensures that no Big Data processes are left on the
compute nodes after execution completion.

● EAR(https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-
energy-management-framework-hpc) is an open-source management framework
optimizing the energy and efficiency of a cluster of interconnected nodes. To improve the
energy of the cluster, EAR provides energy control, accounting, monitoring and
optimization of both the running applications and the cluster. EAR is robust and reliable
and has been in production on Supremacy-NG (LRZ) since 2019. At EAR’s core there
are two components: the EAR Daemon (EARD), and the EAR runtime (EARL). EARL is
a dynamic, transparent and lightweight runtime library that optimizes and controls the
energy consumed by MPI jobs without any application modification or user input. EARL
dynamically identifies repetitive regions in parallel applications. The application
information collected by EARL reports basic performance and power metrics. The
application signature together with the system signature are inputs to the default power
and time model used by EARL. EAR includes a plugin mechanism for power policies,
which can be used by EARL to offer new policies. A power model allows the evaluation
of new models and/or approaches for power/time projections such as neural networks.
Energy accounting and power monitoring is provided by EARplug and EARD. EARD is a
Linux service running with privileges in computing nodes. This service continuously
monitors power and other relevant node metrics, such as temperature and average
frequency, and reports them to the DB through EARDBD (an internal EAR component
not extended in the REGALE project). EARD uses an energy plugin to provide energy
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readings. By default, plugins for the Intel NodeManager and Lenovo SD650 used at LRZ
are provided using the openipmi driver as well as a node energy estimation based on
RAPL counters.

● EXAMON is an open-source monitoring framework deployed at CINECA and designed
by UNIBO. It is composed of three main layers, the Data Collection, the Communication,
the Storage and the application layer. The Data Collection layer samples two kinds of
data i) the physical data measured with sensors and ii) workload information obtained
from the job dispatcher. These software components are composed of two main objects,
the Message Queue Telemetry Transport (MQTT) API and the Sensor API object. The
Communication Layer is built around the MQTT protocol. The storage layer is based on
a distributed and scalable time-series database (KairosDB) that is built on top of a
NoSQL database (Apache Cassandra) as back-end. A specific MQTT subscriber
(MQTT2Kairos) is implemented to provide a bridge between the MQTT protocol and the
KairosDB data insertion mechanism. The Application Layer takes care of the data
gathered by the monitoring framework, which can serve multiple purposes. For example,
ML techniques can be applied to extract power/thermal predictive models or devise
online fault detection.

● COUNTDOWN is an open-source runtime library that is able to identify and automatically
reduce the power consumption of the computing elements during communication and
synchronization of MPI-based applications. COUNTDOWN saves energy without
imposing a significant performance penalty by lowering CPUs power consumption only
during waiting times for which performance state transition overheads are negligible.
This is done transparently to the user. Since COUNTDOWN targets performance-neutral
energy savings, its goal is to avoid performance penalties for a large set of MPI-based
applications. Thus, COUNTDOWN focuses on saving energy only when this has no
effects on performance.

● PULPcontroller is an open-source HW/SW prototype for on-chip power management of
HPC processors. It is developed as part of the European-Processor-Initiative (EPI) by
UNIBO. It is composed of an open-source RISC-V HW design and an open-source
firmware which implements the power capping, thermal management services as well as
the interface with the operating system and with the Board Management Controller
Firmware. The first realization of the PULPcontroller will be in the RheaR1 EPI chip. It
can be emulated on FPGA boards.. Thanks to its open design and flexible architecture, it
can also serve as a firmware level node manager.
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TABLE 1: Tool Classifications
Monitor +
Database

Node
Manager Job Manager System

Manager
Workflow

Engine

SLURM X

OAR X

DCDB X

BEO X X

BDPO X

EAR X X X

Melissa X

RYAX X

Examon X

COUNTDOWN X

PULPcontroller X

BeBiDa X

We realize different implementations using the above tools based on the REGALE strawman
architecture, which can be divided into PowerStack and workflow engine paths, and the latter
consists of Mellissa path and RYAX path. On one hand, the PowerStack path aims to prototype
a software stack to enable full-scale production-grade solutions for a variety of power/energy
management use cases. On the other hand, the workflow engine paths focus more on the
application side, i.e., integrating the workflow management tools (Mellissa or RYAX) with our
pilot applications as well as other components in our architecture, in order to realize
next-generation application management techniques including automatic parameter sensitivity
analysis, ML-based simulation surrogate and dynamic concurrency controlling. The PowerStack
and workflow engine paths will be first integrated individually because of their different focuses,
however we envision combining them in the later stage of the project. In this deliverable
document, we mainly focus on the PowerStack path, define use cases or policies with
requirements and describe the needed architectural modules. For the workflow engine paths,
we introduce their software architecture and the functionalities they support.
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4. PowerStack Use Cases and Requirements

In Task 1.1, we gathered the requirements posed by all key actors in the REGALE architecture,
with a particular focus on the PowerStack path as an initial step. Note that, in the future
deliverables, we will comprehensively cover all the paths including Melissa and RYAX paths
(see also Section 8). To this end, we conducted our studies in both top-down and bottom-up
ways. The top-down approach involved detailed discussions around the possible use cases for
the PowerStack path, starting from the most naive one toward much more sophisticated power
management schemes, and then we clarified the requirements for each use case. The results
are described in this section. The bottom-up approach surveyed the current state of our
software tools in terms of what functionalities they support and how they can interact with other
tools, in order to gain some insights for the general and open requirements/architecture as well
as to confirm the possible use case supports with these tools and how they should be integrated
(see also Section 6 for the initial tool assessment).

Figure 2: Holistic Power Management and Our Current Scope

4.1 Our Initial Scope and Hardware Requirements
Figure 2 illustrates an example of our target HPC systems, assuming holistic power
management, and our current scope. The system consists of multiple different high-level
hardware components such as compute nodes, I/O nodes and other facilities including the
cooling system. In each computer node, there are different components such as CPUs, GPUs,
NICs and DRAM memories. The overall power management is governed by the system
manager daemon launched on the scheduler (or admin) nodes. More specifically, the system
manager distributes power budgets across nodes or any other target facilities, which could be in
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a closed or open loop manner. The closed-loop control makes power budget decisions based on
the actual power consumptions, while the open-loop option does not utilize them. The node/job
managers and the monitor are distributed across the nodes, and they are responsible for the
power setups on node components and the measurement within a node. As an initial step, we
focus on the power management only on compute nodes as they are generally the major power
consumers in HPC systems. In other words, we fix the power budget (or limit) setups on the
other nodes or facilities at their maximum. In the future work, we intend to include the other
components and scale down/up their power budgets depending on their utilizations.

Figure 3: Power Capping Interface Requirements

In order to handle global power budgets across different kinds of components/facilities, we need
to define and unified currency for the power exchanges. More specifically, different components
have different knobs to trade-off performance against power (e.g., clock frequency for CPUs or
temperature setup for cooling facilities), here we call them as power management knobs, and
these knobs can change or can be extended/removed for future products. Therefore, directly
controlling them from the highest-level component, typically the system manager, would not
make sense, and the hardware specific aspects should be hidden as much as possible.

For this reason, we set the following requirements for hardware components to include them for
the power budgeting: (1) they (or other low-level software layers such as operating systems)
must provide a software interface to set power cap (or limit) to them, which must be controllable
from the PowerStack software; (2) they must periodically monitor the actual power consumption
and adaptively control the hardware power management knobs in accordance with the
monitored power, in order to enforce any given power cap; and (3) the interface must also
provide the actual power consumption. The third point is not needed for open-loop power
management use cases, but is required for closed-loop options, e.g., a higher layer of the
software stack detects the unused power on a component and redistributes it to others.

Figure 3 illustrates this feature with different components. For CPUs and DRAM memories,
Intel’s RAPL interface [3] can be used to enforce the power cap as well as to sense the power
cunsumption. Recent GPUs also support such functionalities (e.g., nvidia-smi interface for
NVIDIA GPUs [4]). Cooling facilities generally do not support the power capping features, and a
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software layer to control the power is needed to include them for the power budgeting loop. We
can trade the power budgets across different hardware by using the interfaces, i.e., setting
power caps to them accordingly and adjusting them depending on their demands detected by
use of the measured power. In this document, we call this control feature a power cap knob as a
subset of general power management knobs.

Figure 4: Interface Extension for Thermal Capping

A more advanced option for the interface is augmenting a thermal capping functionality. Figure 4
illustrates an example with CPU. Similar to the power capping, to enable the thermal capping,
the interface should support a closed-loop controlling using the power management knob(s),
including any power-performance knobs such as clock scaling and the power cap knob, while
monitoring the temperature so that it doesn’t exceed the designated temperature limit. The
interface should also be able to report the temperature so that we can double check the
correctness even if we never exchange the temperature across nodes/jobs/components. In this
document, we call this temperature control feature a thermal cap knob.

The thermal capping feature is widely supported in modern commercial processors. They
usually have a temperature controlling hardware to prevent overheating, and if the temperature
exceeds a predetermined threshold (usually set very high such as 80°C), the hardware module
attempts to throttle the throughput by scaling down the clock frequency, thinning out the clocks,
or any other throttling mechanisms. The thermal threshold is exposed to the operating system
layer for several processors [5]. If the threshold is constant, which is the case for some
commercial processors, the temperature capping should be implemented in a low-level software
layer using the mechanism shown in Figure 4. This functionality can be implemented inside of
the Node Manager tools, such as PULP Controller and BEO.

4.2 Use Case / Requirements Description Format
In this section, we define the description formats of use cases and their requirements in a
general and comprehensive manner, following the open standard philosophy of our REGALE
architecture. A power control optimization should be governed by a certain optimization problem
(e.g., maximizing total system throughput under a power constraint), and thus we define a use
case in a form of an optimization problem while covering the following aspects:

REGALE - 956560 19 21.12.2021



D1.1                                                REGALE Requirements, Initial Architecture, and Evaluation Plan

1. Optimization objective(s) for power control
2. Constraint(s) for power control
3. Control knob(s)
4. Temporal/spatial granularity
5. Optimizer(s)

Optimization objective(s) for power control specifies the objective function(s) to optimize the
power control hardware. This can be a system-focused objective (e.g., maximizing total system
throughput or energy-efficiency) or an application-focused one (e.g., minimizing application
runtime or energy consumption). We can cover multi-objective optimizations as well by setting
the objective function as a linear sum (or any other arithmetic function) of these different
objectives and setting the weights (or coefficients) accordingly. As an extreme case, the most
naive one does not have any objective functions, but just sets power management knobs to
functionally enforce constraints without any optimizations.

Constraint(s) for power control is one (or more) constraint(s) set when controlling power
management knobs. This could be power, thermal, performance or any other constraints
(including anomaly tolerability/detectability) at the entire system or application level, depending
on the use case. In case there is no optimization objective, only the constraints affect the actual
power management knob setups. For instance, we attempt to maximize total system throughput
under given power and thermal constraints in a use case by optimizing the power management
knob setups. In case, we have no objective function, we only enforce the limits but do not
optimize anything.

Control knob(s) specifies what hardware/software knobs we control to achieve the objective(s)
while keeping the constraint(s) in the use case. This includes any kind of power management
knobs including in-band power controllers in CPUs, GPUs, or DRAM memories (e.g.,
RAPL-based power capping or clock scaling features) and out-of-band ones, such as the
temperature controller inside of a cooling facility. Further, we also cover other means to optimize
power/energy, such as job scheduling and power/energy-aware code optimizations. Some use
cases highly rely on the control knobs (e.g., need the power cap knob), and thus applicable use
cases to a system highly depend on the available knobs as well.

Temporal/spatial granularity of power control determines when/where the optimization is
applied. The temporal granularity decides the timing of when the power knob setup changes,
such as only at a job launch or in a periodical manner with a certain interval. The spatial
granularity specifies where the optimization happens, such as within each compute node,
across different compute nodes/jobs, or at an even coarser level, e.g., across the entire
compute nodes, the entire I/O nodes, and the cooling facility. The power control decision would
be hierarchical when combining them.

Optimizer(s) are the components that manage the power control optimization. They can be at
system level, at application level, or a combination of both.
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On the other hand, by following the general REGALE architecture shown, we specify the
requirements for all the components/actors per use case. More specifically, we cover the
following components/actors in the specifications here. Note that we will consider adding the
workflow engine to cover more use cases when integrating the different paths in future work.

1. Site Admin
2. Users/Developers
3. System Manager
4. Job Manager
5. Node Manager
6. Monitor

Site Admin can have some roles in several use cases. One example is interacting with the
system for a certain setup (e.g., total system power constraint), and another one is fixing their
policy such as token consumption accounting, i.e., the rules on how much they charge for a job,
so that it fits well the given use case. For instance, some of the user-level optimizations should
pay incentives for users otherwise they are not profitable for users (but at least beneficial for the
site admin).

Users/Developers also can have some roles for optimization as well. As an example, for a
user-level power or energy optimizations, they might need to link some relevant libraries to
optimize their code. Another example is that setting up some environmental variables in their job
scripts could be required to enable some features.

System Manager, Job Manager, Node Manager, Monitor are the software components
included in the REGALE architecture (see Figure 1). Some use cases need to coordinate all of
them while others may need only some of them. The requirements highly depend on all the
aspects that determine the use cases (objectives, constraints, etc).

4.3 Requirement Specifications per Use Case
Before selecting and defining use cases, we consider different levels of sophistication for
different aspects as shown in TABLE 2. By designating the level for each aspect, we can define
a use case. As for objectives, we can increase the number of objective functions to consider,
and we will work on multi-objective optimizations in WP2. For constraints, we will start from a
single constraint (e.g., power) and then later explore multiple constraints (e.g., power and
temperature constraints) as well. For the temporal granularity, we can both cover static and
dynamic manners. As for the spatial granularity, the initial step is setting the node power
management knobs evenly across different nodes, and we gradually include optimizations at
different levels. As for the knobs for optimizations, we first target only the CPU power
management knob, then cover multiple different components (e.g., GPUs and memories), and
finally include job scheduler-level power and energy optimizations.
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TABLE 2: Different levels of sophistications
Level 1 Level 2 Level 3 Level 4

Objective(s) None One (system or
app focused) Multiple objectives …

Constraint(s) One (e.g., power
constraint)

Two (e.g., power
+ temperature)

More (e.g., power
+ temp + anomaly
detectable)

…

Temporal
Granularity

Statically set by
site admin

Statically set
when job launch

Dynamically
adjusted at

runtime
…

Spatial
Granularity

Entire compute
nodes (all nodes
work uniformly)

Intra- xor
inter-node

optimization

Both intra- and
inter-node

optimization

Include other
kinds of nodes or

facilities

Knob(s) CPU power mgmt
knob

Power mgmt
knobs of multiple

components

Include job
scheduling

optimizations
…

Optimizer(s) None
One (system xor

user level
optimization)

Both system and
user level

optimization
…
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4.3.1 Basic Use Cases
We start from the most naive use case, i.e., all Level 1 options in the table, and the
requirements are shown in TABLE 3. In this use case, we set the power limit to the entire set of
compute nodes. The allocated power budget is distributed evenly across the nodes without any
optimizations. We do not have any objective function here, but only try to enforce the power
limit. The power control is conducted in an open-loop manner, i.e., we do not use any feedback
from the measurement side, and the power capping interface is responsible for keeping the
constraint.

TABLE 3: Requirement Specifications for Basic Power Capping (Basic)

Use case Definition Requirements

[Basic] Keep my system
under power cap

Note:
Providing system-level
power capping
functionality w/o any
optimizations; power
budget is distributed
evenly across nodes;
Open-loop control w/o
using measured power at
runtime

Objectives: None (Level1)

Constraints: Power (Level1)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power cap to
System Manager (e.g., 1MW)

Users/Developers: None

System Manager:
Capability/interface to talk to each
node manager to set power cap
to them; HW profiling functionality
to obtain the range of power
consumption when scaling the
target knob; Report if the power
budget setup is outside of the
range or if a significant power
budget violation happens

Node Manager: Talk to HW and
set up power cap based on the
instruction by the system
manager; report if an
error/anomaly happens to the
system manager

Job Manager: None

Monitor: None
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We then go one step further in terms of the constraints set up. More specifically, we augment
the temperature capping functionality to Basic – here, we call this use case as Basic+. Note that
to apply this thermal capping along with the power capping, we need a proper interface as
described in Section 4.1. TABLE 4 summarizes the requirements to support this use case. Aside
from the necessity for the temperature capping interface, the requirements are almost the same
as those of Basic.

TABLE 4: Requirement Specifications for Basic Power and Thermal Capping (Basic+)

Use case Definition Requirements

[Basic+] Keep my
system under power and
thermal caps

Note:
Providing system-level
power and thermal
capping functionality w/o
any optimizations; power
budget is distributed
evenly; the same
temperature setup for
every node; Open-loop
control w/o using
measured power nor
temperature at runtime

Objectives: None (Level1)

Constraints: Power and
temperature (Level2)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power and
thermal caps to System Manager
(e.g., 1MW & 50°C)

Users/Developers: None

System Manager:
Capability/interface to talk to each
node manager to set power and
temperature caps to them; HW
profiling functionality to obtain the
range of power consumption
when scaling the target knob;
Report if the power budget setup
is outside of the range or if a
significant power budget violation
happens

Node Manager: Talk to HW and
set up power and thermal caps
based on the instruction by the
system manager; report if an
error/anomaly happens to the
system manager

Job Manager: None

Monitor: None
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TABLE 5: Requirement Specifications for Basic Power and Thermal Capping with
Anomaly Detectability (Basic++)

Use case Definition Requirements

[Basic++] Keep my
system under power and
thermal caps with
anomaly detectability

Note:
Providing system-level
power and thermal
capping functionality w/o
any optimizations; power
budget is distributed
evenly; the same
temperature setup for
every node; Open-loop
control w/o using
measured power nor
temperature at runtime;
Anomaly is detectable at
any components

Objectives: None (Level1)

Constraints: Power and
temperature constraints +
anomaly detectable (Level3)

Knobs: CPU power &
thermal caps (Level1)

Temporal Granularity:
Updated only when the site
admin changes the setup
(Level1)

Spatial Granularity: Entire
compute node (Level1)

Optimizers: None (Level1)

Site Admin: Set power and
thermal caps to System Manager
(e.g., 1MW & 50°C); Handle
anomaly node reported by
System Manager

Users/Developers: None

System Manager:
Capability/interface to talk to each
node manager to set power and
temperature caps to them; HW
profiling functionality to obtain the
range of power consumption
when scaling the target knob;
Report if the power budget setup
is outside of the range or if a
significant power budget violation
happens; Anomaly detection
function in terms of power and
temperature (reported by other
components); Report when
anomaly is detected to site admin

Node Manager: Talk to HW and
set up power and thermal caps
based on the instruction by the
system manager; report if an
error/anomaly happens to the
system manager

Job Manager: Report if an
error/anomaly happens to the
system manager

Monitor: Provides information on
facility and nodes anomalies

In TABLE 5, we extend Basic+ by adding the anomaly detectability requirement, which we call
Basic++ here. If a target hardware region violates the power or thermal limits more than a
certain threshold longer than a predetermined duration, this should be reported. Here, we just
consider the detection and report functions, but in the future deliverables, we will cover more
sophisticated options such as an anomaly tolerance option with automatic anomaly handling
methodologies. An anomaly can happen at a variety of granularity levels, and thus anomalies
should be detectable at all the software components. In the future work, the anomaly detection,
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correction, and mitigation should be realized at different levels in a hierarchical manner: (1)
application; (2) subsystem; (3) node; and (4) room level. We can consider a variety of use cases
even only on anomaly handling methodologies for different scenarios or target hardware.

4.3.2 Advanced Use Cases
Next, we extend the Basic use case by optimizing the hardware power management knob setup
while following a given objective function. Here, we cover the following objectives: maximizing
total system throughput (SysThru); minimizing total system energy (SysEne); maximizing
application performance (AppPerf); and minimizing application energy-to-solution (AppEtS). For
all of these use cases, we assume the site administrator sets the power constraint to the entire
set of compute nodes, and then we optimize the power budgeting across these nodes while
keeping the constraint to achieve a given objective. TABLE 6 describes the
definition/requirements for each of these options. Here, we consider power is only the
constraint, however this can be extended to cover more constraints by adding requirements
listed in Basic+ or Basic++. Another option for the constraints is considering average or
maximum application performance degradation. For SysThru, we consider closed-loop power
controls in these use cases, i.e., we dynamically adjust the power management knob in
accordance with the measured power consumption and resource utilizations at runtime. These
measurements are used for estimating the power demand of a node by the Node Manager,
which is then sent to the System Manager to redistribute the power budgets across nodes.
SysEne is almost the same as SysThru except for the objective function and an option to scale
down the total power budget allocated to the entire set of compute nodes, which could improve
energy efficiency but wouldn’t improve throughput. On the other hand, AppPerf and AppEtS are
application level (or user level) optimizations. In these use cases, we utilize application profiles
of previous or test runs, which are provided by Monitor. By analyzing the profiles, Job Manager
decides the setups of the target power management knob (CPU power cap, CPU clock
frequency scaling or any others) as well as performs code tuning as an option. One needs to
link the specific libraries to the code to realize these application level options.

TABLE 6: Requirement Specifications for Optimization Variants

Use case Definition Requirements

[SysThru] Maximizing
total system throughput
under power cap

Note:
Optimize power budget
allocations across nodes
under the total system
power cap so that the
total system throughput
can be maximized;
Closed-loop power
management at runtime;

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Dynamically adjusted at
runtime (Level3)

Site Admin: Set power cap to the
entire compute nodes via System
Manager (e.g., 1MW); Revisit the
token accounting policy to deal
with potential unfairness

Users/Developers: None

System Manager: All the
functionalities supported in Basic;
Periodical power budget
redistribution function based on
the reported unused power and
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Assuming over
provisioned situation;
Adding more constraints
is an option (e,g.,
thermal cap, application
speed-down limit)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: System-level
optimization (Level1)

power budget request by Node
Manager; Power budget
distribution policy to maximize
throughput

Node Manager: All the
functionalities supported in Basic;
Periodically measure power and
application stats at runtime (PMU,
sysfs); policy to detect whether
the node needs less/more power
budget; report the above to
System Manager

Job Manager: None

Monitor: Providing monitoring
data to Node Manager (option)

[SysEne] Minimizing
total system energy
consumption under
power cap

Note:
The requirements are
almost the same as
those for SysThru; Need
to update the power
distribution
policy/algorithm from
SysThru, in particular
Node Manager level;
Adding more constraints
is an option (e,g.,
thermal cap, application
speed-down limit)

Objectives: Min system
energy consumption (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap
(Level1)

Temporal Granularity:
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: System-level
optimization (Level1)

Site Admin: Same as SysThru

Users/Developers: None

System Manager: Same as
SysThru; Scaling down total
system cap adaptively is an
option

Node Manager: Same as
SysThru but need updates in the
power budget request policy, i.e.,
detecting the optimal power mgmt
knob setup to minimize energy (or
maximize energy efficiency)

Job Manager: None

Monitor: Providing monitoring
data to Node Manager (option)

[AppPerf] Maximizing
application performance
under power cap

Note:
Similar to SysThru, but
allows users to optimize
power knobs while
keeping power cap;
Adding more constraints

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power mnmt
knob (Level1)

Site Admin: Same as SysThru;
Allow user level (or Job Manager
level) power management

Users/Developers: Link the
relevant library (provided by Job
Manager) to their code

System Manager: Same as
SysThru
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is an option (e,g.,
thermal cap)

Temporal Granularity:
Statically set when job launch
(Level2) or Dynamically
adjusted at runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: App-level
optimization (Level1)

Node Manager: Same as
SysThru except that it needs to
provide an interface to let Job
Manager know the current power
knobs and allow it to further
optimize them

Job Manager: App profiling to
optimize power mgmt knobs
(power cap, clock freq, etc.) as
well as a power-aware code
tuning functionality

Monitor: Providing monitored
stats to Job Manager.

[AppEtS] Maximizing
energy to solution for
app under power cap

Note:
Almost same as AppPerf
except that the objective
is minimizing energy;
Adding more constraints
is an option (e,g.,
thermal cap, application
speed-down limit)

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power mgmt
knob (Level1)

Temporal Granularity:
Statically set when job launch
(Level2) or Dynamically
adjusted at runtime (Level3)

Spatial Granularity: Inter
node optimization (Level2)

Optimizers: App-level
optimization (Level1)

Site Admin: Same as AppPerf

Users/Developers: Same as
AppPerf

System Manager: Same as
AppPerf

Node Manager: Same as
AppPerf

Job Manager: Same as AppPerf

Monitor: Same as AppPerf
except that the optimization policy
must be updated.
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4.3.3 More Advanced Use Cases
We then cover more advanced options by extending one of the above optimization variants. We
focus on SysThu as an example, but the requirements here are general and should stand
regardless of the objective function setup while who optimizes can be different. First, we
consider NodPowShift: power shifting across different components inside of a node. To support
this option, the most significant modification would be in Node Manager, i.e., extending the
existing knob control policy and providing the functionality to distribute power budgeting among
in-node components. Second, as a next step, we consider a use case named SchedOpt:
power-aware job scheduling support along with power management knob optimizations. This
use case requires application characteristic analysis using historical data collected by Monitor,
regarding throughput, energy efficiency, and so forth under a given power control scheme. The
requirements for these two use cases are specified in TABLE 7.

TABLE 7: Requirement Specifications for Advanced Use Cases

Use case Definition Requirements

[NodPowShft]
Maximizing total system
throughput under power
cap via coordinating
knobs of different
in-node components

Note:
Should be agnostic in
objectives and
constraints except for
who manages it and the
actual policy

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Knobs: CPU power cap +
other components like GPU
or DRAM memory power
caps (Level2)

Temporal Granularity:
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter-
and intra-node optimization
(Level3)

Optimizers: System-level
optimization (Level1)

Site Admin: Same as SysThru

Users/Developers: Same as
SysThru

System Manager: Same as
SysThru

Node Manager: Needs a layer to
distribute a power cap to different
component; Update the policy to
exploit the above feature

Job Manager: Same as SysThru

Monitor: Same as SysThru

[SchedOpt] Maximizing
total system throughput
under power cap w/ job
scheduling optimization
(+ intra-node power
shifting)

Objectives: Max system
throughput (Level2)

Constraints: Power cap
(Level1) – or extensible to
include more (Level2/3)

Site Admin: Same as
NodPowShft

Users/Developers: Same as
NodPowShft
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Note:
Should be agnostic in
objectives and
constraints; Needs job
characteristics estimation
using historical data
collected by Monitor;
Here we assume this use
case is an extension of
NodPowShft.

Knobs: CPU power cap +
other components like GPU
or DRAM memory power
caps + job scheduling
(Level3)

Temporal Granularity:
Dynamically adjusted at
runtime (Level3)

Spatial Granularity: Inter-
and intra-node optimization
(Level3)

Optimizers: System-level
optimization (Level1)

System Manager: Power-aware
scheduling policy using the
historical job statistics

Node Manager: Same as
NodPowShft

Job Manager: Same as
NodPowShft

Monitor: Providing collected job
statistics under power
optimizations

4.3.4 Discussions
Some of these use cases are aligned with the PowerStack initiative community [1]. Our major
contribution here is describing them in a generalized form while defining the levels of
sophistication in different aspects as shown in TABLE 2. We then describe the necessary
functionalities/interfaces to realize these use cases in Section 5.1 while reflecting the current
state of our software tools. Section 6 summarizes our initial step for integrating these software
tools to enable use cases described here. Further, we also introduce more sophisticated use
cases in the future deliverables based on the studies to be conducted in WP2.

We will continuously assess and update the use cases in terms of necessity, coverage,
comprehensiveness, and so forth throughout the project. In this document, we picked up these
use cases, starting from the most naive one and sophisticating it step-by-step toward different
directions, while considering the current tool support. For this, we take multiple different aspects
(e.g., objective, constraint, etc.) into account to define a use case, while setting up multiple
levels for each of them. If this setup is appropriate, we can assure the necessity, coverage, and
comprehensiveness of this approach. We will continuously check the appropriateness with tool
developers, HPC users, or site admins, not limited within the project but also includes outside
communities such as the PowerStack initiatives.

As for the tool support for each use case, we will start implementing from the most naive one
(i.e., the Basic use case) and will gradually increase the coverage as well. We will at least
consider realizing all the use cases listed here (and more options will be explored in WP2), and
if one is turned out to be non-relevant to the project, we will update or remove it accordingly.
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5. Architecture Descriptions

In this section, we explain the details of the initial architecture for different paths: PowerStack
path and workflow engine path. The former is based on the PowerStack use cases specified in
the last section, and we accordingly extend the strawman architecture (see also Figure 1). The
latter consists of two different workflow engines our project has, Melissa and RYAX, and we
describe the software architectures of these tools.

5.1. PowerStack Path
Following our strawman architecture and the PowerStack use cases described in the previous
sections, we define the details of the software architecture for the PowerStack path. Before
delving into the details, we summarize the roles of the use cases and the software architecture
in the overall PowerStack development and the relationship with other work packages.

Figure 5: Overall Decision Tree for Site Administrator

Figure 5 represents the decision tree a site administrator would follow when utilizing REGALE
for resource management. There should be different options for the power management, and
the site administrator would choose one of them, which fits the site policy the best. One or more
implementations can exist for one use case (e.g., implemented with different software tools or
different algorithms to realize it), and when an option is designated by the site administrator, the
set of associate plugins or tools should be selected and work coordinatively. This actual
implementation/integration part is the role of WP3, and the initial idea is described in Section 6.
In contrast to this, the software architecture is an open and general form of describing the
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required functionalities each software component should have to realize a certain use case,
which should not be tool specific, and for this, we follow the requirement specifications written in
Section 4. However, even so, we also collected the current states of software tools we have in
the REGALE project and checked if the direction of software architecture fits them well. In WP2,
we are investigating a variety of sophistication techniques for improving resource management,
some of which would contribute to enhancing the use cases and to extending the functionalities
in the final PowerStack implementation.

Figure 6: Software Architecture of System Manager

We then introduce the software architecture of System Manager based on the requirements
specified in the last section – Figure 6 illustrates the architecture. This component consists of
multiple sub-modules, and the roles of them are listed as follows:

● The Power Governor makes decisions on the power budget distribution as the central
controller. This sub-component provides several power management policies
associated with the use cases, and one of them is selected by the site administrator. In
practice, these options are implemented as plugins in a system management tool such
as Slurm. This sub-component should also own the power profile manager that collects
a variety of hardware information used in these power management policies. For
instance, the Basic use case needs to know the upper limit of system power
consumption when the CPU power capping is applied across all compute nodes, and if
the system power cap designated by the site administrator is out of the applicable range,
that should be reported. Another example is that the profiler should also know which
components are the targets of the power management. Further, the power governor
should have the anomaly detector that gathers anomaly behaviors reported by the
other components (or detects by itself from reported power consumption) and notify
them to the site administrator (or any other components if needed).
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● The Stats Analyzer is mainly used for the sophisticated resource management
techniques to be explored in WP2. This sub-component analyzes the historical statistics
collected by the Monitor to gain hints/insights into the scheduling decisions, such as the
characteristics of applications, the job submission pattern, which is a function of data like
system information, predicting the future system state based on them, and so forth. The
results of analyses here should be accessible to the Job Scheduler so that it can use
these functionalities. The exact functions required here depend highly on the scheduling
objectives, methodologies, algorithms, etc., which are going to be explored in WP2.

● The Job Scheduler can be one of the main actors for our power management,
particularly in the SchedOpt use case. This sub-component attempts to schedule jobs so
that the objective function is maximized/minimized under given power or thermal
constraints. In SchedOpt use case, the Job Scheduler needs to know the following
aspects: (1) the characteristics of all queuing jobs, which are supplied by the associated
job scripts or the Stats Analyzer depending on the information; (2) the power
management policy currently applied in the Power Governor; and (3) the status of
currently running jobs including the actual power consumption.

● The Token Accountant is responsible for calculating the token consumption, i.e., how
much the site charges for each executed job, which is a key factor and needs to be
revisited for several use cases. In most HPC sites, the token consumption is usually
determined by the number of nodes occupied by the job, multiplied by the job execution
time. In case of application level power or energy optimizations (e.g., the AppEtS use
case), the site admin should motivate the users to be green, otherwise most of them
would optimize their application to just minimize the time to solution, even if the
job-oriented power/energy optimization use cases are applied. Revisiting the token
management policy is one of the promising solutions for this purpose – if the token
consumption were directly determined by the job power or energy consumption, the
users would care about it. Thanks to the monitoring tools, we can realize this option in
the REGALE project.

● The Interface to Other Components is used for sending out the decisions made by the
system manager such as launching a job and redistributing the power budgets and also
for collecting system information needed for the decision making including actual power
consumption, anomaly reports, power requests, and so forth.

● Human Actors: The Site Administrator selects the policies in the Job Scheduler and
the Token Accountant, and the Power Governor and takes an action when an anomaly is
reported accordingly. Users submit their jobs to the job scheduler. In addition, for several
use cases related to job-oriented power/energy optimizations, they care about the
power/energy consumption in their jobs. For this, they may link relevant Job Manager
libraries to their codes and set up several parameters or variables accordingly to take
advantage of the PowerStack software tools. In addition, applying power- or
energy-aware code optimizations to their application by hand or in an automatic manner
is an option for them for one step further optimizations. For this, the site administrator
may allow the users to access the power management knobs depending on their policy.
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Next, we describe our system-level node power management using the Node Manager and the
Monitor component in Figure 7. Here are the details:

Figure 7: System-level Node Power Management

● The Node Manager should be able to access the in-band or out-of-band hardware
sensors and actuators via the relevant interfaces that meet the requirements specified in
the last section. As an option, it will enhance the hardware sensor accessibility by using
the API or the monitor database, the monitoring tools offer.

● The Node Manager should also have an interface to interact with the System Manager.
As described in the last section, we assume the Node Manager receives power
management information sent by the System Manager, such as the node power budget,
the power management policy associated with the selected use case, etc.. It also
periodically sends the node status/requests including the measured node power, the
request for less/more power budget, the detected anomaly, and so forth.

● The Node Manager has a Closed-Loop Power Controller that controls power
management knobs in accordance with the measured data at runtime. As described in
the last section, the power measurement is a requirement, and collecting other runtime
information such as hardware performance counters is an option. Another option is using
historical data previously obtained by the Monitor. This Closed-Loop Power Controller
should have a Power Profiles Manager that calibrates/trains the hardware related
parameters in the power/performance models used in the control loop. The exact
models, algorithm, and policy used in the power management should be provided as a
plugin.
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● The Node Manager should also have an Anomaly Detector that detects an anomaly
state by comparing the measured power and the power limit set by the controller. If a
significant power cap violation happens, it should report that to the System Manager and
also handle it accordingly while interacting with the controller. This component is
independent of the controller as this functionality should work regardless of the power
management policy currently working. The exact error handling policy is up to the use
case or the software implementation. Further, this function can sit inside of the
monitoring tool so that it can record the anomaly information on the database.

Figure 8: Application-level Node Power Management

Finally, Figure 8 illustrates our application-level power management at a node. The Job
Manager plays a key role here and takes over some tasks from the Node Manager to optimize
power management knobs in a more application-aware fashion. For this, the Node Manager
should be able to provide an interface so that the Job Manager can utilize some of the
functionalities such as interacting with the System Manager (e.g. by using SLURM APIs), and
also should be able to arbitrate/prioritize the power management knob accesses between them.
The Anomaly Detector in the Node Manager should operate even with the Job Manager and
can enforce strict power management knob setups if an anomaly is detected. Note the actual
division of labour depends on the given use case or the implementation. As an example, if the
thermal constraint is applied, yet, the Job Manager doesn’t support this feature, the Node
Manager should handle it, i.e., it will take over the power management knob control when the
temperature violation happens. The following list describes the sub-components inside of the
Job Manager:
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● Users (or developers) can link the Job Manager libraries to their codes when compiling
them, in order to utilize the power management functionalities. They can also change the
policy or parameter setups in the Job Manager, e.g., via configuration files. They may
also be able to control the power management knobs by themselves through the APIs of
the Job/Node Managers or lower-level interfaces, which is however usually not permitted
by the site administrator due to the security concerns.

● The Profiler accesses the Monitor Database and analyzes the profiles of previous runs
of the application or any others in order to help with the power management decisions.
One role of the Profiler is to characterize the target applications by using several
statistics, including compute intensity, cache miss rate, branch prediction miss rate, or
any others. For instance, BEPO attempts to detect the phases of the target application
by using some of these metrics. These metrics can also be used as inputs to models to
estimate performance, power, or energy for several tools. Another role of the component
is determining the coefficients in those models, which are usually functions of hardware
characteristics. To train the coefficients, it can also utilize the profiles of previous test
runs of this application or a pre-selected benchmark suite. The actual training
methodology depends highly on what models we use here – for instance, the naive
curve fitting is used for the widely-used linear regression modeling. Further, as an option,
the profiler may associate performance, power, or energy with different combinations of
code optimizations (e.g., compiler flags) and power management knob setups for the
target application, which is useful for the autotuning purpose.

● The Offline Optimizer is responsible for any static and proactive decisions made by the
Job Manager. If the tool determines the power management knob setups before running
the job, this offline optimizer handles the setups. Here, the setups should be determined
for all the possible node power budgets. Another example of static decision is selecting
the models that fit the best for the target application from given variants. Further, another
option is as described above, choosing an optimal set of codes as well as the power
management knob decisions.

● The Online Power Controller handles the power management knobs at runtime based
on the static decisions made by the Offline Optimizer. It should also be able to access
the runtime information, such as current node power budget, to select optimal power
management knob setups. As an option, the Job Manager can work in a more dynamic
manner, such as a closed-loop power control using runtime application statistics. In
either case, optimizer should be defined to be able to tolerate input dependencies, as
the characteristics or behaviors of some applications highly depend on their arguments
or input files. The power controller may have its own anomaly detection function.
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5.2 Workflow Engines

5.2.1 Melissa Path

Melissa is a framework dedicated to the on-line data processing of large scale ensemble runs.
Ensemble runs consist in running several instances of usually the same simulation code, with
different parameters. This kind of approach is also referred to as parameter sweep or Monte
Carlo methods. They are getting more common as the compute power available is increasing.
Methods relying on ensemble runs include sensibility analysis, training of deep surrogate
models, data assimilation, reinforcement learning to name a few. The amount of data generated
by an ensemble run, that can consist of thousands of simulation runs, each one being already a
complex advance parallel simulation code, is quickly overwhelming, saturating the system
storage, slowing down the simulation executions, but also other users’ runs impacted by
interference on the I/O system. On-line data processing solutions are thus critical.

Melissa (https://gitlab.inria.fr/melissa) is an open source (BSD) framework dedicated to large
scale ensemble runs and on-line/in transit data processing. Melissa has been developed with
built-in features that are essential when targeting Exascale: fault tolerance and elasticity. As an
example of Melissa capabilities, largest runs for sensibility analysis study so far involved up to
30k core, executed 80 000 parallel simulations, and generated 288 TB of intermediate data that
did not need to be stored on the file system.

Figure 9: Melissa Architecture Overview
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Melissa architecture relies on 3 interacting components:

● Melissa runners (clients): the parallel numerical simulation code turned into a
client. Each client sends its output to the server as soon as available. Clients are
independent jobs.

● Melissa server: a parallel executable in charge of iterative (on-line) data
processing. Upon reception of new data from any one of the connected clients,
the server processes it to update its on-line computations and discard it, sot the
memory requirements on the server side stay under control.

● Melissa Launcher: the front-end Python script in charge of orchestrating the
execution of the ensemble run. This is the user entry point to configure the study
of experiment. The launcher is also tightly interacting with the machine batch
scheduler to control executions, including faults and elasticity.

Melissa today supports directly 2 types of applications, plus a third one in development:

● Sensibility analysis where the parallel server compute statistics relying on
parallel incremental algorithms (for computing the average, variance and
co-variance, skewness, kurtosis, minimum, maximum, threshold exceedance,
quantiles and Sobol' indices)

● Data assimilation where the server implements a parallel EnkF filter or a particle
filter, with capabilities for load balancing member propagations to clients.

● Deep surrogate training where the parallel server trains a deep neural network
from the data produced by the client. Training is performed in parallel on several
GPUs  using model parallelism through the Horovod library.

Melissa tightly interacts with the batch scheduler as each client as well as the server run
independent jobs. Melissa’s work with the batch scheduler consists in submitting jobs,
monitoring their status, and killing and restarting failed ones under the control of a fault
tolerance  protocol. Melissa is also both moldable and malleable:

● Malleability (elasticity): clients can be killed or added at any time during the
execution, if under external requests the melissa application is requested to free
resources or given the possibility to run more clients. We often refer to this
capability as elasticity.

● Moldability (heterogeneous clients): different client instances can run on different
resources as each one at connection time setup its own NxM communication
pattern with the server. Melissa internal load balancing support also enables
these clients to progress at different speeds. So some clients may for instance
use GPUs and other be running on CPUs only.

In the context of the Regale project Melissa is expected to be used for Pilots 1, 2 and 5 for
sensibility analysis and deep surrogate training. These pilots, in addition to Melissa already
existing use cases, will be part of the benchmarking suite to experiment various resource
allocations strategies.
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Melissa will evolve to leverage the tools and features developed in REGALE for resource
allocation and monitoring:

○ The Melissa launcher will be augmented to provide the necessary information to
the batch scheduler so this last one can:

■ Identify that the Melissa jobs belong to the same run.
■ Mold each job according to resources available, potentially recognizing

that client jobs all have similar execution profiles, opening the possibility
to infer from past clients execution the behavior of the upcoming clients
to execute.

■ Adapt on-line the resource used, potentially killing some clients jobs if
necessary (malleability).

○ The Melissa launcher will be augmented to aggregate and report to the user the
power consumption (global, per job, etc.), relying on Regale power monitoring
tools.

5.2.2 RYAX Path

The Ryax platform developed by Ryax Technologies is a proprietary workflow management
system for data analytics. It provides the means to create, deploy, update, execute and monitor
the execution of data processing workflows on hybrid on-premises, Cloud, HPC computing
infrastructures.

The Workflow Management system is responsible for the automation of orchestration and
execution of task collections upon computational resources. A common pattern in scientific and
cloud computing involves the execution of different computational and data manipulation tasks
which are usually coupled i.e., output of one task used as input on another. Hence, coordination
is required to satisfy data dependencies. The task execution is handled by the system and can
be distributed among the underlying available computational resources. Consequently, this
introduces further complexity on the system side, related to processes such as load balancing,
data storage, data transfer, tasks monitoring and fault-tolerance. Furthermore, on the application
side, workflows provide an end-to-end view of the processing rather than focusing on a specific
part of the computation which allows users to control the full process by abstracting the
complexity of how each task is executed. Automation of the aforementioned aspects of the
orchestration process along with the complexity abstraction has led to the creation of workflow
management systems.

The RYAX platform proposes a new DSL language based on YAML and particular abstractions
that allow users to develop workflows of data processing taking into account the end-to-end
dataflow view of the processes. As such, the design of a workflow which can be done either
graphically through a Web User Interface or programmatically through a Command Line
Interface incorporates the inputs and outputs of each task and how they are interconnected
among them in DAG-style representations. Ryax, through its design and abstractions offers a
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unified handling of batched and streaming data definitions to cover processing of both bounded
and unbounded datasets, which makes it an attractive engine for hybrid Big Data/HPC
applications.

In more detail the principal concepts of RYAX are:

● A module, which is an independent task representing a separate building block of a
broader data processing application. It may have inputs, outputs and a specific code that
manipulates the inputs with some logic to produce the outputs. There are four types of
modules in RYAX:

○ A source, which allows data ingestion from the outside world. They are long running
processes (micro-services) which can trigger new workflow executions.

○ A processor, which is a stateless process (FaaS) that basically can perform processing.
They use their inputs to ingest data from upstream produce outputs added to the down
stream.

○ A stream Operator, which is a specialized process to manipulate data streams hence
addressing streaming analytics. For example, you may merge multiple data streams
together or buffer data at any given point.

○ A publisher, which is a stateless process that pushes data to external services, like a
database or an online service for example.

● The workflow, which is a complete data processing application composed of modules
linked together in the form of a DAG. The intermediate links are data streams. Each
module uses some data from the input stream and adds its output data to the stream.
This way, the data that a module outputs is accessible to every downstream module. In
other words, any module has access to the data of upstream modules.

The internal architecture of RYAX is shown in Figure 10 and as we can see it is composed of
different components managed by the Kubernetes orchestrator to guarantee interoperability,
flexibility, auto-healing, easy upgrade/downgrade and fault-tolerance of the deployed
components’ microservices.
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Figure 10: Ryax Architecture Overview

In particular we have:

● The Ryax client services:
○ WebUI, which is an NGINX server that serves our frontend written with Angular.
○ ADM, which is the administrator tool for Ryax used to deploy, update and

backup/restore a Ryax instance upon a certain infrastructure.
○ CLI, which is an open-source Python based command line interface that enables

users to build modules and create, submit and monitor workflows.
● The Ryax internal services:

○ Authorization, which manages user and project authorization along with roles
control within Ryax.

○ Repository, allows the Ryax users to scan Git repositories and import Ryax
modules. It also enables the triggering of the modules built through the Module
Builder. Once the build is finished, the modules are sent to the Studio to be
placed in the Module Store. It exposes an HTTP Rest API that is used by the
WebUI and the CLI. It uses the Postgres datastore to persist its state using ORM.

○ Studio, enables Ryax users to create and deploy workflows. It exposes an HTTP
Rest API that is used by the WebUI and the CLI. It uses the Postgres datastore
to persist its state using ORM.

○ Module builder, which receives module build orders from the Repository service,
does the build in a sequential and synchronous way (one at a time) making use
of the NIX functional package management software for dependencies control.
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○ Runner, which plays the role of interface between Ryax and the computing
resources to launch and execute modules & run workflows. Thus, it enables the
deployment, run and schedule of each module of the workflow.
It also manages the execution metadata and data. This micro-service
communicates with the modules through gRPC, http and the broker (RabbitMQ).

○ Module wrapper, which is used between our system and the user code to be
able to run it. This is not an internal Ryax service, but a wrapper that is put
around user code in order to communicate with Ryax. It creates a gRPC server
with a simple interface that initiates the module and then run executions.
This wrapper works for both processors and source modules with the same
protocol: the source modules are streaming execution response, while the
processors are only sending one response and close the connection.

● The Ryax external services:
○ Datastore, which enables the state storage of all statefull services and is based

upon PostgresQL. Each service has a different access credential and a separate
database.

○ Filestore, which is used to store execution I/O files and directories based upon a
Minio file storage service which exposes an S3 compatible API.

○ Broker, which enables internal communication between all services using
messages serialized in Protobuf and is based upon RabbitMQ message broker.

○ Registry, which stores the users' modules created by the Module builder in a
Docker registry.

By default the architecture allows the execution of modules using the runner upon the
underlying Kubernetes cluster on which RYAX is deployed. However, the Runner is currently
being adapted in such a way that enables a finely integrated “on-demand offloading” to external
Task executors, Orchestrators or Resource Managers, such as HPC schedulers like SLURM
and OAR.
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Figure 11: Ryax Architecture of On-demand Offloading to HPC infrastructures

Hence one of our contributions within the REGALE project is to adapt the Runner in such a way
in order to enable the execution of specific modules upon particular resources of the HPC
clusters. In particular users will have the ability to demand resources, select the HPC batch
scheduler to use and enable the execution of a workflow so that modules can be executed on
the connected HPC clusters.

In more detail our contributions in the context of Regale project will be:

● Support of SLURM (and OAR if time allows) batch scheduler(s) through an SSH or
REST based execution mechanism

● Support of Singuarlity as HPC containerization runtime.
● Support of NFS as shared file system for data exchange among the modules being

executed upon the HPC platform

The Ryax platform can specifically be used to deploy Big Data and ML applications on HPC
clusters. In this context, besides the direct execution of Big Data applications using dedicated
HPC resources, we will enable an integration with BeBiDa software to allow a more elastic
execution of Big Data applications through the technique of Best-Effort jobs of batch schedulers.
Figure 11 shows a high-level view of the integration between Ryax and BeBiDa.

In more detail our contributions in the context of Big Data applications will be:
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● Support of the Spark Big Data framework
● Integration with BeBiDa software for elastic HPC resource management and improved

Big Data execution guarantees.
● Multi-criteria scheduling techniques on top of Kubernetes to take into account HPC

observability (resource usage, energy consumption, etc) to intelligently deploy the
different modules of the submitted workflows.

Figure 12: Ryax - BeBiDa integration
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6. Initial Ideas of PowerStack Integration

In this section, we first assess our software tools to realize the PowerStack path. More
specifically, we map them to the architecture components specified in the last section and
discuss the missing pieces in order to support these use cases. We then introduce our initial
integration plan currently discussed in WP3 as well.

6.1 Tool Assessment for PowerStack

TABLE 8: Candidates for System Manager / Monitor and Current Functionality Support
/ = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need

Moderate/Major Updates, Blank = No (or Almost No) Support
System Manager Monitor

Job Token Power
governor Analyzer API/Lib In-band Out-of-

band Anomaly DB API/Li
b

SLURM X X X / / X / /

DCDB X / / / X / /

Examon X / / / X / /

BEO / X X /

EAR X / / X / /

TABLE 8 lists the candidate tools for System Manager and Monitor, and the current support for
the key functionalities. OAR, a job scheduling tool, is not listed here as we consider SLURM as
the core component in the PowerStack path due to the current support status, but OAR will be
used for the workflow engine path or some sophistications in WP2. By default, SLURM has
several key functionalities, including job scheduling, token management, and power
management, but they may require updates depending on the use cases to support. For
instance, we need to develop exact algorithms for the SchedOpt use case and to implement
them as SLURM plugins. SLURM has a token management component as well, and extending
it to support power-/energy-aware token management policy is needed for the AppEtS use
case. As for the Power Governor, several basic power management functionalities/interfaces
are already supported in SLURM, such as designating CPU power cap to each node/job, but we
need to modify them to support more complicated use cases. Using EAR (EARGM) as the
power governor is another option, and the interaction with SLURM to obtain job information is
already supported in the tool via SLURM plugins/APIs. As for the statistics analysis functions,
several monitoring tools (e.g., DCDB and Examon) already support them, such as ML-based
modelings, and they are extensible and changeable by plugins. These analytics functions may
be updated for realizing several sophisticated use cases in the future (e.g. system modeling for
cooling-aware power and job scheduling).
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As for the monitoring aspect, DCDB and Examon can measure both in-band and out-of-band
sensors periodically (from 0.1Hz up to 100Hz of frequency depending on what we measure) and
are extensible to support any sensors by plugins, including such as those in cooling facilities.
These collected information is recorded with the associated job information on their database
– these tools are also able to interact with SLURM to obtain job information. The measurement
function is accessible by other tools, such as those Node Manager tools, by using their APIs.
For the above strengths, DCDB and Examon are candidates for the mainstream option of the
Monitor module, however the others also can work as the Monitor in several implementations
depending on the use cases.

TABLE 9: Candidates for Node/Job Manager and Current Functionality Support
/ = Fully Supported or Need Minor Updates, X = w/ Some Restrictions or Need

Moderate/Major Updates, Blank = No (or Almost No) Support

Node Manager Job Manager HW access

Closed
loop ctr Anomaly Access to

sys mngr API/Lib Profiler Pow ctr +
Anomaly API/Lib In-band Out-of-b

and

SLURM X X / / /

PULP ctr / X / X

BEO X X X / / X

BDPO / X / /

EAR X / / / X / /

Countdown X / /

Next, TABLE 9 summarizes the candidates for Node or Job Managers, and the current support
for their key functionalities as well as their in-band or out-of-band hardware knob/sensor
accessibilities. The SLURM node daemon works together with the SLURM system controller,
and there are a variety of API functions to access their information. Although the default power
management support in the node daemon is limited (e.g., no node-level power shifting support),
the tool is useful as an interface to interact with the system manager. PULP controller is a
low-level power controller, works transparently to the application, user, and system software,
currently targeting EPI processors [6]. The tool can access both in-band and out-of-band
sensors and automatically optimizes power management knobs using model predictive control
algorithms under thermal and power limits. BEO is an out-of-band power monitoring and
controlling tool. The supported hardware is a set of AMD/Intel machines in the Atos catalog
because the tool is developed in Atos, with a particular focus on their products, and a plugin is
needed for other systems. It monitors power consumption using out-of-band sensors and can
set the power cap using the in-band RAPL interface. The tool is going to be improved by
implementing the following: setting the node power/termal capping via Slurm (Basic/Basic+);
and sophisticated power control and anomaly detection mechanisms. BDPO is a job-oriented
profile-based power-performance optimization tool, which optimizes clock frequency to trade-off
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performance and energy or to minimize energy (AppEtS use case supported), and can be
extensible to cover other job-oriented use cases. EAR is another job-oriented
power-performance monitoring tool. It transparently optimizes the power management knobs on
CPUs and GPUs using the profiles of previous runs that are automatically detected. The power
management policies are implemented as plugins. The tool currently supports the minimizing
energy to solution (AppEtS) use case, and is extensible to cover other use cases such as
AppPerf or NodPowShft. COUNTDOWN is another tool that enables job-level
power/performance optimizations based on a different focus than others. It tries to minimize the
power consumption while waiting for the completion of an MPI communication, by scaling down
the clock frequency or going into one of the CPU sleep states (C-state). It targets Intel CPUs,
but is going to support other hardware including GPUs. The tool will reinforce the AppEtS use
case and will open up new research opportunities and use cases, which are going to be covered
in the future deliverables.

6.2 Initial Integration Plan in WP3
One of the main goals of the project is the tool integration to realize a European software stack
for power and workflow management in supercomputers of the new generation. The purpose of
the WP3 is to accomplish this goal. This WP is started in November 2021 at Month 7 and it will
conclude at the end of Month 36 with the conclusion of the project. All the partners involved in
the WP3 focused the first month of work to explore an initial integration of the tools. In particular,
most of the time spent in the WP3 during November and in the second plenary meeting was
based on sharing integration ideas and possible points of contacts among all the tools involved
in the project.

In TABLE 10, we presented most of the integration ideas and developments planned in the
project. We highlight the improvement(s) on the tools that each partner will focus on during the
project. In REGALE we will continue the work on the development and the extension of each
tool to improve its maturity but, at the same time, each partner planned to integrate its tool with
other tools proposed in the project. In particular, the TABLE 10 proposed two levels of
integration, the first one is the planned integration, this work has been planned and described in
the DoA document and it will be completed before the end of the project, it has been identified in
the table with a X. The second is a potential integration discussed in the first month of work and
represented in the table with a question mark. This will be discussed during the project to find a
potential point of contact and the consequently integration. The goal of the project is to integrate
as much as possible the tools to propose a larger and more efficient software stack. This is not
always possible astools overlap in some functionality in particular on monitoring and power
management. However we think that there are several points of contact to work on a broader
integration to realize more efficient and mature tools. We show that this is possible in the TABLE
10, where we can see that there are several partners who propose a huge number of potential
integrations that will be explored in the next project months in the WP3. However, this would go
beyond what the project promised in the proposal to show that it is possible to make a more
efficient European software stack for power and workflow management.
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TABLE10: Matrix of tool integration that reports the integration discussed in the proposal
I = Tool improvement, X = Planned integration, ? = Potential integration

SLURM OAR DCDB BEO BDPO EAR Melissa RYAX EXA
MON CNTD PULP

Ctr Bebida

SLURM - I I I x X

OAR I ? X I ? ? ? X

DCDB I X ? ?

BEO I X ? - I ? ?

BDPO I X I - ? ?

EAR I X X I ? ? ? ?

Melissa X ? I

RYAX X ? ? ? I X

EXAMON X ? ? ? I X X

CNTD ? ? ? ? X I ?

PULP Ctr ? ? ? X ? I

Bebida X X X I
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7. Evaluation Plan
The evaluation of REGALE is a highly challenging task. On one hand, REGALE addresses a
wide range of strategic objectives with varying quantification/qualification metrics which call for
diverse and non-trivial evaluation strategies. We provide below the quantification of these
strategic objectives together with their metrics, baselines and targets. On the other hand,
evaluation at scale, and ultimately for exascale, is hard, since large-scale operational systems
are not easily available for testing system software that needs exclusive and privileged access
to the system. To cope with this problem, we will follow an incremental approach, where: a)
initial implementations will be tested at laboratory scale using tens to hundreds of processing
cores in native or virtualized platforms, b) tested and validated components will be further
evaluated on Tier-1 production systems provided by CINECA, BSC and BADW-LRZ, c) we will
utilize the PRACE facilities to request for even more resources at Tier-0 systems and d) novel
scheduling policies will be evaluated using realistic resource management simulation, directly
interfacing production resource managers with Batsim a state-of-art HPC simulator.

STRATEGIC OBJECTIVE 1 (SO1): EFFECTIVE UTILIZATION OF RESOURCES
SO1.1: Improved application performance. By equipping critical applications with computational
resources in a sophisticated manner, we will drastically increase their performance (metric: time
to solution) compared to current state-of-practice (baseline: execution in a state-of-the-art
supercomputer with the current setup). For traditional HPC applications, we expect that this
benefit may reach up to a target of 20%. For complex, workflow-based applications, the benefits
can reach a target of more than 2x, depending on their resource footprint and data
dependencies.
SO1.2: Increased system throughput. Focusing on the system side, by incorporating REGALE
innovation in supercomputer operation we aim for an increase in system throughput (metric:
committed applications per day) compared to current state of the art (baseline: as above) by at
least 30% depending on the mixture of applications to execute on the system.
SO1.3: Minimization of performance degradation under the operation with power constraints.
Current practices for power capping are mostly brute-force, i.e. they completely shut down
nodes in the supercomputer to enforce the requested level of power consumption. This means
that for example 20% in power consumption reduction translates into 20% decrease in system
throughput. In REGALE we will consider the resource demands of the application mix under
execution to enable effective power capping. Our goal in this case is to at least halve the impact
of power capping on throughput (metric: as above) compared to current state-of-the-art
(baseline: as above)
SO1.4: Decreased energy to solution. REGALE will be able to support supercomputer operation
prioritizing reduced energy consumption. Our goal under this scenario is to achieve at least 15%
energy reduction maintaining the same throughput of current state of practice (target: 10%,
metric: energy reduction with the same throughput, baseline: as above).

STRATEGIC OBJECTIVE 2 (SO2): BROAD APPLICABILITY
To assess if this SO is met, we will validate the existence of the following key features:
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Scalability: The REGALE system is targeted to be able to operate in exascale setups and
beyond. To assess this objective we will perform experimental results and simulation as
described above and we will also extrapolate our results to higher scales. Our goal in this case
will be for our prototype system to have minimal overheads at all scales.
Platform independence: The REGALE system should be able to operate across all major
architectures of large supercomputing facilities and be free of any vendor lock-in. This will be
validated by our integration process, where we will provide full integration scenarios with at least
two vendor-specific solutions and will provide indicative solutions for all major modules of the
HPC ecosystem.
Extensibility: The REGALE system should be extensible to any new feature or component that
aligns to its open architecture. This will be validated through our implementation process. We
will build the REGALE system with gradual incorporation of features, starting from the critical
ones and adding sophistication and complexity within the various versions in the development
and integration process.

STRATEGIC OBJECTIVE 3 (SO3): EASY AND FLEXIBLE USE OF SUPERCOMPUTING
SERVICES
To assess if this SO is met, we will validate the existence of the following key features:
Automatic allocation of resources: Users of complex applications should not bother with the way
their application is distributed to an exascale system. We will compare the process of requesting
resources between the current state-of-the-art systems and applications and the REGALE
solution.
Programmability: Application developers should easily interface with the REGALE architecture
and system to develop and deploy their code. This will be qualitatively assessed by the
application developers and pilot users of the Consortium by comparing the features of their
application before and after the optimizations within REGALE.
Flexibility: Applications should be able to execute under lightweight virtualization within the
REGALE-enabled system.
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8. Conclusions and Future Directions

In this initial deliverable, we sorted out the architecture requirements, the components/interfaces
definition, the initial integration plan, and the evaluation plan. To this end, we first collected the
current status of our software tools and formulated possible PowerStack use cases in a general
and incremental manner. Second, we specified the software requirements for each use case
and described the initial REGALE architecture, while following the requirements. We then
assessed our software tools to realize the use cases based on the architecture and introduced
the initial integration and evaluation plans. This deliverable is going to be the milestone for the
actual software integration/implementation in WP3 as well as the pointer to missing pieces to be
investigated as scientific studies in WP2.

In the future deliverables, we will update the REGALE architecture in accordance with the
lessons learned throughout implementing the use cases in WP3. We assume the integration
experiences would be useful to elaborate the architecture definition. However, this would require
minor modifications and would not change the use case definition, though, because the use
cases and the requirements are the guideline for the actual implementations and should be
independent of them. Improving the architecture descriptions by using an open/standard form by
following the literature [7] will be another good option.

Another direction is generalizing the architecture one step further by unifying the PowerStack
path and the workflow engine paths (Melissa and RYAX). In WP4, our pilot applications will be
integrated with these workflow engines to realize sophisticated simulations such as automatic
parameter sensitivity analyses, simulation surrogates with deep neural networks, automatic
concurrency controls, and so forth. These new paradigms of application management in HPC
would introduce new research opportunities to holistic resource management in HPC centers, in
particular when under a power constraint. For instance, the system manager might need to be
aware of the behaviors of those new types of scientific simulations for better power budgeting
across different jobs, nodes, or components. Another promising way as an example is
implementing a power capping functionality inside of these workflow engines and coordinating
the system manager and the workflow engines to deal with the power budgets in a sophisticated
way via a newly introduced or an extended interface between them. This could be a new use
case, and then we would update the requirement specifications as well as the architecture
accordingly. This work would need an extensive collaboration across different paths.

Last but not least, aside from the workflow engine aspects, we will introduce any other research
outcomes from WP2 to the use case specifications and the architecture design. In WP2, we will
generally investigate various sophisticated resource management techniques to enhance the
state-of-the-arts, all of which would bring us useful insights to elaborate our architecture. As an
example, co-scheduling, i.e., co-locating multiple HPC jobs on a node in a space-sharing
manner would be a great addition. We will explore this direction in terms of both the theoretical
aspects including hardware/software requirements and the actual implementations. For
instance, clarifying the requirements to partition the power budgets among co-located jobs on
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the same node at the same time would be a good option for fair power/energy accounting. As
another example, we are investigating ML-based resource management techniques, which
would help with specifying the roles or requirements for some sub-components in these
architecture modules in more detail. Furthermore, covering different kinds of nodes or facilities
in our power management loop is another promising direction to extend our work. As described
in this document, including I/O nodes is one good option for this because various applications
are now I/O bound, and thus dealing with power budgets across compute and I/O nodes in both
system- and application-level would be a good use case to consider. Covering cooling systems
in our power management loop is a promising direction to explore, though we need a software
layer to power cap them, predict their power consumption, detect anomalies and need to care
about the time constant to converge to the target value. More generally, power budgeting across
different kinds of compute nodes for inter-node heterogeneous HPC systems would be another
option to explore. Furthermore, investigating how we should handle anomaly states at different
granularities including different kinds of hardware would be an interesting research direction.
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